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ABSTRACT 

In this work, impacts of Lorentz force and hydrodynamic slip on the flow characteristics of an 

upper-convected Maxwell (UCM) nanofluid through a permeable microchannel embedded in 

porous medium are investigated numerically using fifth-order Runge–Kutta–Fehlberg method. 

Based on the parametric study, it is observed from the results that increase in slip parameter, 

nanoparticle concentration and Darcy number lead to increase in the velocity of the UCM 

fluid, while increase in Deborah’s, Hartmann and Reynolds numbers decreases the fluid flow 

velocity towards the lower plate. But as the upper plate is approached, a reverse trend is 

observed. The study can be used to advance the application of UCM flow in the areas of 

biomedical, geophysical and astrophysics. 
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INTRODUCTION 

The boundary layer flow of a viscoelastic 

fluid over a flat surface and channel has 

continued to find its various applications 

such as gaseous diffusion, blood flow 

through oxygenators and flow in blood 

capillaries which have continue to arouse the 

research interests. Also, there are various 

complex rheological fluids such as blood, 

paints, synovial fluid, saliva, jam which 

cannot be adequately described by Navier–

Stokes equations. This leads to the 

development of complex constitutive 

relations to capture the flow behaviour of the 

complex fluids [1]. Among the newly 

developed fluid models of the integral and 

differential-type models, upper-convected 

Maxwell (UCM) fluid model has showed to 

be an effective fluid model that captures 

these phenomena of fluids, especially of 

those with high elastic behaviours such as 

polymer melts since highly elastic fluids 

have high Deborah number [2, 3]. In the 

analysis of Maxwell flow, Fetecau [4] 

presented a new exact solution for flow 

though infinite microchannel, while Hunt 

[5] studied convective fluid flow through 

rectangular duct. Sheikholeslami et al. [6] 
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investigated magneto-hydrodynamic 

(MHD) field effect on flow through semi-

porous channel utilizing analytical methods. 

Shortly after, Sheikholeslami [7–9] adopted 

numerical solutions in the investigations of 

nanofluid in semi-annulus enclosure. Flow 

of UCM fluid through porous stretch sheet 

was investigated by Raftari and Yildirim 

[10]. Entrophy generation in fluid in the 

presence of magnetic field was analysed by 

Sheikholeslami and Ganji [11] using lattice 

Boltzmann method, while Ganji et al. [12] 

used analytical and numerical methods for 

the fluid-flow problems under the influence 

of magnetic field. The flow of viscoelastic 

fluid through a moving plate was analysed 

by Sadeghy and Sharifi [13] using local 

similarity solutions. Mass transfer and flow 

of chemically reactive UCM fluid under 

induced magnetic field was investigated by 

Vajrevulu et al. [14]. Not long after, Raftari 

and Vajrevulu [15] adopted the homotopy 

analysis method in the study of flow and 

heat transfer in stretching wall channels 

considering MHD. Hatami et al. [16] 

presented forced convective MHD nanofluid 

flow conveyed through horizontal parallel 

plates. Laminar thermal boundary flow layer 

over flat plate considering convective fluid 

surface was analysed by Aziz [17] using 

similarity solution. Beg and Makinde [18] 

examined the flow of viscoelastic fluid 

through Darcian microchannel with high 

permeability. 

 

Most of the above review studies focused 

on the analysis of fluid flow under no-slip 

condition. However, such an assumption of 

no-slip condition does not hold in a flow 

system with small-size characteristics or 

low-flow pressure. The pioneer work of 

flow with slip boundary condition was first 

initiated by Navier [19]. Such an important 

condition (slip conditions) occurs in 

various flows such as nanofluids, polymeric 

liquids, fluids containing concentrated 

suspensions, flow on multiple interfaces, 

thin-film problems and rarefied fluid 

problems [19–31]. Due to the practical 

implications of the condition of flow 

processes, several studies on the effects of 

slip boundary conditions on fluid-flow 

behaviours have been presented by many 

researchers [19–32]. Abbasi et al. [33] 

investigated the MHD flow characteristics 

of UCM viscoelastic flow in a permeable 

channel under slip conditions. However, to 

the best of the author’s knowledge, a study 

on simultaneous effects of Lorentz force, 

slip, nanoparticle and porous medium on 

the flow characteristics of a UCM 

viscoelastic nanofluid has not been carried 

out in literature. Therefore, in this work, 

impacts of Lorentz force and hydrodynamic 

slip on the flow characteristics of a UCM 

nanofluid through a permeable 

microchannel embedded in porous medium 

are investigated. The nonlinear partial 

differential equations governing the flow 

phenomena are converted to a nonlinear 

ordinary differential equation using 

similarity transformation. Thereafter, the 

ordinary differential is solved numerically 

using fifth-order Runge–Kutta–Fehlberg 

method. 

 

MODEL DEVELOPMENT AND 

ANALYTICAL SOLUTION 

Consider a laminar slip flow of an 

electrically conducting fluid in a 

microchannel. Along the y-axis, magnetic 

fields are imposed uniformly, as described 

in the physical model diagram (Figure 1). It 

is assumed that external electric field is 

zero and electrical conductivity is constant. 

Therefore, magnetic Reynolds number is 

small and magnetic field induced by fluid 

motion is negligible. 

 

Based on the assumptions, the governing 

equation for the Maxwell fluid is presented 

as [8] follows: 

𝑇 − 𝑝𝐼 + 𝑆 (1) 
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Fig. 1. Flow of upper-convected Maxwell fluid between permeable channels embedded in 

porous medium. 

 

Where the Cauchy stress tensor is T and S 

is the extra-stress tensor which satisfies 

𝑆 + 𝜆 (
𝑑𝑠

𝑑𝑡
− 𝐿𝑆 − 𝑆𝐿𝑇) 𝜇𝐴𝐿  (2) 

 

The Rivlin–Ericksen tensor is defined by 

𝐴𝐿 = 𝛻𝑉 + (𝛻𝑉)𝑇 (3) 

 

The continuity and momentum equations 

for steady, incompressible, two-dimensional 

flows are expressed as 

𝜕𝑢̄

𝜕𝑥
+

𝜕𝑣̄

𝜕𝑦
= 0 (4) 

𝜌𝑛𝑓 (𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
) = −

𝜕𝑃

𝜕𝑥
+

𝜕𝑆𝑥𝑥

𝜕𝑥
+

𝜕𝑆𝑥𝑦

𝜕𝑦
−

𝜎𝑛𝑓𝐵
2(𝑡)𝑢 −

𝜇𝑛𝑓𝑢

𝐾𝑝
 (5) 

𝜌𝑛𝑓 (𝑢̄
𝜕𝑣̄

𝜕𝑥
+ 𝑣̄

𝜕𝑣̄

𝜕𝑦
) = −

𝜕𝑃

𝜕𝑥
+

𝜕𝑆𝑦𝑥

𝜕𝑥
+

𝜕𝑆𝑦𝑦

𝜕𝑦
−

𝜇𝑛𝑓𝑣̄

𝐾𝑝
  (6) 

Where the effective density 𝜌𝑛𝑓 and 

effective dynamic viscosity 𝜇𝑛𝑓  of the 

nanofluid are defined as follows: 

( )1 ,nf f s   = − +
 

( )
2.5

,
1

f

nf





=

−
 

3 1

1 ,

2 1

s

f

nf f

s s

f f





 

 
 

 

   
−  

   = +        + − −   
          

And 

 

Sxx, Sxy, Syx and Syy are extra-stress tensors 

and ρ is the density of the fluid. Using the 

shear-stress strain for a upper-convected 

liquid, the governing equations of fluid 

motion are easily expressed as [16] 

0
u v

x y

 
+ =

 
 (7) 

 

𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
+ 𝜆 (𝑢2

𝜕2𝑢

𝜕𝑥2
+ 𝑣

𝜕2𝑢

𝜕𝑦2
+

2𝑢𝑣
𝜕2𝑢

𝜕𝑥𝜕𝑦
) = 𝑣𝑛𝑓

𝜕2𝑢

𝜕𝑦2
−

𝜎𝑛𝑓𝐵
2(𝑡)𝑢

𝜌𝑛𝑓
−

𝜈𝑛𝑓𝑢

𝐾𝑝
  

(8) 

Where flow velocity component (u, v) are 

velocity component along the x- and y–

directions, respectively. Since the flow is 

symmetric about channel centreline, 

attention is given to the flow region 0 < y< 

H. Appropriate boundary condition is given 

as [14] 

𝑦 = 0:
𝜕𝑢

𝜕𝑥
= 0, 𝑣 = 0  (9) 

𝑦 = 𝐻:
𝜕𝑢

𝜕𝑦
= −𝛽𝑢,  𝑣 = 𝑉𝑤  (10) 

where Vw and β are the wall characteristic 

suction velocity and sliding friction, 

respectively. 

 

The physical and thermal properties of the 

base fluid and nanoparticles are given in 

Tables 1 and Table 2, respectively. 
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Table 1: Physical and thermal properties of the base fluid 
Base Fluid ρ (kg/m3) Cp (J/kg K) k (W/m K) σ(Ω-1m-1) 

Pure water 997.1 4179 0.613 5.50 

Ethylene glycol 1115 2430 0.253 1.07 

Engine oil 884 1910 0.144 4.02 

Kerosene 783 2010 0.145 4.01 

 

Table 2: Physical and thermal properties of nanoparticles 
Nanoparticles ρ (kg/m3) Cp (J/kg K) k (W/m K) σ(Ω-1m-1) 

Copper (Cu) 8933 385 401 59.6 

Aluminium oxide (Al2O3) 3970 765 40 16.7 

SWCNTs 2600 42.5 6600 0 429 

Silver (Ag) 10500 235.0 429  

Titanium dioxide (TiO2) 4250 686.2 8.9538  

Copper (II) oxide (CuO) 783 540 18  

 

The similarity variables are introduced as follows: 

', ( ); ( );w w

y
u V xf y v V f y k

H H





= = − = =  (11) 

 

With the aid of the dimensionless parameters in Equation (11), the constitutive relation is 

satisfied. Equations (2)–(4) can be expressed as follows: 

( ) ( ) ( ) ( ) ( )
2.5 2.5''' 2 ' ' 2 '' ' '' 2 '''1

1 1 1 2 0s

w

f

f M f Re f ff De ff f f f
Da


   



  
− + + − − + − + − − =       

  (12) 

And the boundary conditions as 
''0 : 0; 0f f = = =   (13) 

' ''1: : 1f kf f = = − =  
 

Where 𝑅𝑒𝑤 =
𝑉𝑤𝐻

𝜐
 is the Reynolds number, 𝐷𝑒 =

𝜆𝑉𝑤
2

𝜐
 is the Deborah’s number, 𝑀2 =

𝜎𝐵0
2𝐻

𝜇
 is 

the Hartman parameter, 𝐷𝑎 =
𝐾𝑝

𝐻
 is the Darcy’s number. For Rew > 0 corresponds to suction 

flow, while Rew < 0 corresponds to injection flow, respectively. 

 

Equation (13) is a third-order differential equation with four boundary conditions, through a 

creative differentiation of Equation (12). Hence introducing fourth-order equation as 

( ) ( ) ( ) ( ) ( )
2.5 2.52 2 '' 2 21

1 1 1 2 2 0iv ivs
w

f

f M f Re f f ff De f f ff f f
Da


   



  
     − + + − − + − + − − + =         

(14) 

Equation (14) satisfies all the four boundary conditions in Equation (13). 

 

NUMERICAL PROCEDURE FOR THE ANALYSIS OF THE GOVERNING 

EQUATION 

Equation (14) is a fourth-order ordinary differential equation which is, in this work, analysed 

numerically using fifth-order Runge–Kutta–Fehlberg method (Cash–Karp Runge–Kutta) 

coupled with shooting method. Since Runge–Kutta method is for solving first-order ordinary 
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differential equation, the fourth-order ordinary differential equation is decomposed into a 

system of first-order differential equations as follows: 

' ,f p=                                                                                                                                    (15a) 

'' ' ,f p q= =                                                                                                                               (15b) 

''' ' ,f q z= =                                                                                                                             (15c) 

( ) ( ) ( ) ( ) ( )
2.5 2.52 2 2 21

' 1 1 1 2 2 ' 0s

w

f

z M q Re pq fq De p q fq f z
Da


   



  
− + + − − + − + − − + =       

 (15d) 

 

Equations (15a)–(15b) can be written as follows: 

( ), , , , ,a f p q z p =
                                                                                                                 (16a) 

( ), , , , ,b f p q z q =
                                                                                                                  (16b) 

( ), , , , ,c f p q z z =
                                                                                                                       (16c) 

( )

( ) ( ) ( ) ( ) ( )

( )( )

2.5 2.52 2 2

2.5 2

1
1 1 1 2 2

, , , ,
1 1

s

w

f

M q Re pq fq De p q fq
Da

d f p q z
De f


   






  
+ − − − + − − − −       

=
+ −

 

(16d) 

 

The iterative scheme of the fifth-order Runge–Kutta–Fehlberg method (Cash–Karp Runge–

Kutta) for the above system of first-order equations is given as follows: 

1 1 3 4 5 6

2835 18575 13525 277 1

27648 48384 55296 14336 4
i if f h k k k k k+

 
= + + + + + 

   

1 1 3 4 5 6

2835 18575 13525 277 1

27648 48384 55296 14336 4
i ip p h l l l l l+

 
= + + + + + 

   

1 1 3 4 5 6

2835 18575 13525 277 1

27648 48384 55296 14336 4
i iq q h m m m m m+

 
= + + + + + 

   

1 1 3 4 5 6

2835 18575 13525 277 1

27648 48384 55296 14336 4
i iz z h r r r r r+

 
= + + + + + 

   

where 

( )1 , , , ,i i i i ik a f p q z=
 

( )1 , , , ,i i i i il b f p q z=
 

( )1 , , , ,i i i i im c f p q z=
 

( )1 , , , ,i i i i ir d f p q z=
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Using the above fifth-order Runge–Kutta–Fehlberg method coupled with shooting method, 

computer programs are written in MATLAB for the solutions of Equation (14). The results for 

step size, h = 0.01, are presented in the following section. 

 

RESULTS AND DISCUSSION 

Using copper nanoparticle and water, the results obtained from the analytical solution are 

shown graphically in Figures 2–9, when Rew=8, De=0.1, M=2, ℏ = 0.1, Da=2 and 𝜙 = 0.01, 

unless otherwise stated. Figures illustrate the influence of nanoparticle concentration (𝜙) on 

the flow process. As shown from the figures, the quantitative increase of the nanoparticle 

concentration causes increase in the velocity distribution. It is very important to indicate 

viscoelastic nature of the fluid. Therefore, the effects of Deborah’s number on the flow process 

are depicted in Figure 3. It is illustrated that increase in Deborah’s number (De) illustrates the 

UCM as highly elastic fluid (such as polymeric melts) that depicts decrease in fluid-flow 

velocity. 

 

 
Fig. 2. Effect of nanoparticle concentration number (𝜙) on the axial velocity of the flow 

process. 
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Fig. 3. Effect of Deborah’s number (De) on the axial velocity of the flow process. 

 

 
Fig. 4. Effect of Hartmann parameter (M) on the axial velocity of the flow process. 

 

The influence of magnetic field parameter 

on flow of the UCM fluid under is depicted 

in Figure 4. As observed in the figure, the 

numerical increase of the magnetic or 

Hartmann parameter (M) shows 

decreasing velocity profile. This is 

because the applied magnetic field 

produces a damping effect (Lorentz force) 

on the flow process. This damping effect 

increases as the quantitative or numerical 
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value of the Hartmann number increases. 

It should be noted that the effect of 

magnetic field parameter is maximum 

towards the upper flow channel. In order to 

show the effect of the permeability of the 

porous medium on the flow, effect of 

Darcy parameter (Da) on fluid transport is 

illustrated in Figure 5. Increasing Darcy 

number demonstrates increasing velocity 

profile as shown in the figure.

 

 
Fig. 5. Effect of Darcy’s number (Da) on the axial velocity of the flow process. 

 

 
Fig. 6. Effect of slip parameter (k) on the axial velocity of the flow process. 
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Figure 6 shows the effect of fluid slip 
parameter (k) on the velocity of the fluid 
flow. It should be noted that the slip 
parameter depicts that the fluid velocity at 
the boundary is not at equal velocity with 
fluid particles closest to flow boundary due 
to large variance in macro- and micro-fluid 

flow. As observed from Figure 6, increasing 
the slip parameter leads to decreasing 
velocity distributions of the process. In order 
to show the relative significance of the 
inertia effect as compared to the viscous 
effect, the effect of Reynolds number on the 
flow phenomena is illustrated in Figure 7. 

 

 
Fig. 7. Effect of Reynolds number (Rew) on the axial velocity of the flow process. 

 

 
Fig. 8. Effect of Reynolds number (Rew) on the radial velocity of the flow process. 
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Fig. 9. Effect of Hartman parameter (M) on the radial velocity of the flow process. 

 
It is established from the graphical display 

that increasing Reynolds number (Rew) 

causes decrease in flow profile whose effect 

is maximum towards the upper plate. 

 

Figure 8 shows the effect of increasing 

Reynolds number on the radial velocity 

component of the flow. It is shown that 

increasing the Reynolds number causes 

decrease in velocity distribution but as flow 

reaches the mid-plate around 𝜂 = 0.5 (not 

determined accurately), an increasing 

velocity distribution is seen. However, 

effect is minimal towards the upper plate. 

Also, influence of magnetic field on radial 

velocity is depicted in Figure 9, as a 

significant increase in velocity is seen due 

to quantitative increase of Hartmann 

parameter (M) towards the lower plate, 

while as upper plate is approached, a 

reverse trend is observed. 

 

CONCLUSION 

In this work, impacts of Lorentz force and 

hydrodynamic slip on the flow 

characteristics of an UCM nanofluid 

through a permeable microchannel 

embedded in porous medium have been 

investigated numerically using fifth-order 

Runge–Kutta–Fehlberg method. Important 

fluid parameter effects such as Deborah’s 

number, Darcy parameter and Hartman 

parameter were investigated on flow that 

increases in slip parameter, nanoparticle 

concentration and Darcy number which 

lead to increase in the velocity of the UCM 

fluid, while increase in Deborah’s, 

Hartmann, and Reynolds numbers decrease 

the fluid-flow velocity towards the lower 

plate. But as the upper plate is approached, 

a reverse trend is observed. The results 

obtained in this work may be used to further 

UCM fluid in applications in biomedical, 

astrophysics, geosciences, etc. 
 

NOMENCLATURE 

𝑅𝑒𝑤 Reynolds number 

M Hartman parameter 

k Slip parameter 

De Deborah’s number 

ℏ Auxiliary parameter 

𝑣∗ y axis velocity component 

𝑢∗ x axis velocity component 

𝑥 Dimensionless horizontal coordinate 
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𝑦 Dimensionless vertical coordinate 

𝑥∗ Distance in x axis parallel to plate 

𝑦∗ Distance in y axis parallel to plate 

Da Darcy number 

 
Greek Symbols 

𝜌 Fluid density 

𝜆 Relaxation time 

𝜐 Kinematic viscosity 

𝛽 Sliding friction 

𝜙 Nanoparticle concentration 
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