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Abstract 

Flank wear of cutting tools is often selected as the tool life criterion because it determines the 

diametric accuracy of machining, its stability and reliability. In this work the effect of cutting 

parameters like RPM, feed rate and depth of cut is studied on dry turning of EN19 tool steel 

and input parameters are optimized for minimum tool wear. RSM technique is employed to 

achieve the minimum tool wear. Combined effects of the cutting parameters on tool wear (VB) 

are investigated. 
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INTRODUCTION 

The turning of EN19 tool steel material, 

which have high tensile strength yields 

desirable results only when optimum 

process parameters are selected. This tool 

steel has a very high usage in automobile 

industry. Turning operation is used and 

flank wear as well as optimum condition 

are studied.  

 

Tool wear in machining is defined as the 

amount of volume loss of tool material on 

the contact surface due to the interactions 

between the tool and work piece.  

 

Specifically, tool wear is described by 

wear rate (volume loss per unit area per 

unit time) and is strongly determined by 

temperature, stresses, and relative sliding 

velocity generated at the contact interface. 

Tool wear have significant influences on 

the accuracy of the finished product. 
[1–3]

 

 

Response surface method (RSM) is very 

useful for modelling and analysis of a 

process. It adopts both mathematical and 

statistical techniques in which a response 

of interest is influenced by several 

variables.  

 

Tool Wear 

High contact stress between the tool rake-

face and the chip causes severe friction at 

the rake face. This results into a variety of 

wear patterns and scars which can be 

observed at the rake face and the flank 

face.  

 

Flank Wear (Clearance Surface) 

Flank wear creates inaccuracy of the 

product size and results in the formation of 

a wear land. It is observed that wear and 

formation of wear is not always uniform 

throughout the wear land.  

 

In fact, flank wear can be monitored in 

production by examining the tool or by 

tracking the change in size of the tool or 

machined part. Flank wear is generally 

measured by using the land size VB and 

VBmax (Figures 1, 2). 
[4, 5]

 

http://www.mech.unimelb.edu.au/manuf-sci3/436413/tool_wear.htm#phenonena
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Fig. 1. Flank Wear. 

 

Different Stages of Tool Wear 

 
Fig. 2. Different Stages of Wear. 

 

Initial (Preliminary) Wear Region 

The initiation of wear is due to by micro-

cracking, surface oxidation and carbon 

loss layer, as well as micro-roughness at 

the cutting tool tip. For a brand new 

cutting edge, the small contact area and 

high contact pressure will result in high 

wear rate. The initial wear size is 

VB=0.05–0.1 mm normally. 

 

Steady Wear Region 

After the initial (or preliminary) wear 

(cutting edge rounding), the micro-

roughness is improved, in this region the 

wear size is proportional to the cutting 

time. The wear rate is relatively constant. 

 

Severe (or Ultimate or Catastrophic) 

Wear 

When the wear size increases to a critical 

value, the surface roughness of the 

machined surface decreases, cutting force 

and temperature increase rapidly, and the 

wear rate increases. Then the tool loses its 

cutting ability. In practice, this region of 

wear should be avoided. 

The effect of cutting tool on machining 

performance can be summarized as 

follows: 

 Cutting force increases 

 Surface roughness increases 

 Dimensional accuracy deceases 

 Temperature increases 

 Production efficiency, component 

quality decreases 

 Cost increases 

 

Experimental Details 

The following studies are carried out: 

 Identification of important process 

parameters and selection of their 

levels. 

 Development of the design matrix. 

Conducting the experiments as per the 

design matrix. 

 Recording of the response. 

 Development of mathematical model 

using response surface methodology. 

 Calculation of the co-efficient of the 

polynomials. 

 Analysis of experimental result for tool 

wear. 

 Optimization of process parameter 

using response surface methodology.
[6]

 

 

RESPONSE SURFACE 

METHODOLOGY 

The quadratic equation used for modelling 

of the system is: 
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Where, ε represents the noise or error 

observed in the response y such that the 

expected. Response is (y–ε) and b’s are the 

regression coefficients to be determined. 

To check the adequacy of the model for 

the responses in the experimentation, 

Analysis of Variance (ANOVA) is 

used.
[7,8]

 

 

In the ANOVA table, there is a P-value or 

probability of significance for each 

independent variable in the model the 
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value of which shows whether the variable 

is significant or not. If the P-value is less 

or equal to the selected α-level, then the 

effect of the variable is significant. If the 

P-value is greater than the selected α-

value, then it considered that the variable 

is not significant. Sometimes the 

individual variables may not be 

significant. If the effect of interaction 

terms is significant, then the effect of each 

factor is different at different levels of the 

other factors. ANOVA for different 

response variables are carried out in the 

present study using commercial software 

Minitab (Minitab user manual, 2001) with 

confidence level set at 95%, i.e., the α-

level is set at 0.05. 
[9]

 

 

EXPERIMENTATION 

Factorial points are vertices of the n-

dimensional cube which are coming from 

the full or fractional factorial design where 

the factor levels are coded to -1, +1. 

Central point is the point at the center of 

the design space. Axial points are located 

on the axes of the coordinate system 

symmetrically with respect to the central 

point at a distance α from the design center 

(Table 1). 
[10]

 

 

Table 1. Components of Central Composite Second Order Rotatable Design (Cochran and 

Cox, 1962). 
Variable (K) Fractional points (2k) Star point (2k) Centre point (n) Total (N) Value of α 

3 8 6 6 20 1.682 

4 16 8 7 31 2.000 

5 16 10 6 32 2.000 

6 32 12 9 53 2.378 

 

Considering uniform precision, for three 

factor experimentation, eight (2
3
) factorial 

points, 6 axial points (2 × 3) and six center 

runs, a total of 20 experimental runs may 

be considered and the value of α is (8)
1/4

 = 

1.682. The components of central 

composite second order rotatable design 

for different number of variables are given 

in Table 2. A pictorial representation of 

different points for the case of 3 variables 

is shown in Figure 3. 
[11]

 

 

 
Fig. 3. Central Composite Rotatable Design in 3X-Variables (Cochran and Cox, 1962). 
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Process Variables and Their Limits 

The working ranges of the parameters for 

subsequent design of experiment, based on 

Response Surface Methodology with 

rotatable design have been selected. In the 

present experimental study spindle speed, 

feed rate and depth of cut have been 

considered as process variables. The 

process variables with their units (and 

notations) are listed in Table 2 (Figures 4–

6). 
[12]

 

 

Table 2. Process Variables. 

 
Level 

Variables 
–

1.682 
–1 0 1 

1.68

2 

DOC (mm) 0.159 0.5 1 1.5 
1.84

1 

FEED 

RATE(mm/rev) 
0.032 0.1 0.2 0.3 

0.36

8 

RPM 230 
40

0 

65

0 

90

0 
1070 

 

Selection of Work Piece Material 

The EN 19 Tool Steel rod of size 70mm in 

length and diameter 32mm has been used 

as a work piece material for the present 

experiments because EN19 is a high 

quality, high tensile alloy steel usually 

supplied readily machinable in ‘T’ 

condition, giving good ductility and shock 

resisting properties combined with 

resistance to wear. The chemical 

composition and mechanical properties of 

the work-piece materials are shown in 

Table 3. 

 

Table 3. Chemical Composition of EN 

19T. 
Element Chemical composition (wt%) 

Carbon 0.36–0.44 

Silicon 0.10–0.35 

Manganese 0.70–1.00 

Chromium 0.90–1.20 

Molybdenum 0.25–0.35 

 

             
 

Machine Tool Used: SIEMENS controlled 

CNC turner wit maximum speed of 6000 

RPM feed rate 10,000 mm/min. 

 

Equipment Used to Measure Tool Wear: 

Tool Maker’s Microscope Mitutoyo (TM 

500) least count 0.005 mm (Table 4). 

Table 4. Tool Wear Data (FW) With Coded an Uncoded Values. 
Run order Coded values Response 

 
RPM FEED DOC FW(mm) 

1 0 0 1.681793 0.116 

2 1 1 1 0.081 

3 1 1 1 0.105 

4 1 1 1 0.09 

5 1 1 1 0.115 

6 1.681793 0 0 0.143 

7 0 0 0 0.121 

8 1 1 1 0.118 

9 1 1 1 0.135 

10 1.68179 0 0 0.088 

Tool Holder Specification: MCLNL 2020-K12. 

 

 

Cutting Tool Used 

CERATIZIT make Carbide tool inserts 

Specification: CNMG 1200408EN-TMR 

(insert). 
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11 0 1.681793 0 0.127 

12 0 0 0 0.124 

14 1 1 1 0.131 

15 0 1.68179 0 0.118 

16 0 0 0 0.123 

17 0 0 0 0.121 

18 0 0 0 0.12 

19 1 1 1 0.1 

20 0 0 1.68179 0.079 

 

RESULT AND DISCUSSION 

A second order quadratic model have been 

developed using speed, feed, and depth of 

cut as input and tool wear as response 

(Tables 5–7). 

 

Tool Wear = 0.121893 + 0.01578 × RPM + 0.001914 × Feed Rate + 0.009462
× Depth of Cut − 0.00263 × RPM × RPM6 − 0.008994 × Depth of Cut
× Depth of Cut 

 

Table 5. Estimated Regression Coefficients for Tool Wear 
Term Coef SE Coef T P 

Constant 0.121893 0.001164 104.681 0.000 

A 0.01578 0.000773 20.425 0.000 

B 0.001914 0.000773 2.477 0.033 

C 0.009462 0.000773 12.248 0.000 

A*A 0.00263 0.000752 3.497 0.006 (Significant) 

B*B 0.000155 0.000752 0.206 0.841 

C*C 0.008994 0.000752 11.959 0.000 (Significant) 

A*B 0.000375 0.001009 0.372 0.718 

A*C 0.000125 0.001009 0.124 0.904 

B*C 0.001625 0.001009 1.61 0.139 

S = 0.00285504 
 

PRESS = 0.000596219 

R-Sq = 98.64%, R-Sq(pred) = 90.06%, R-Sq(adj) = 97.42% 

 

Table 6. ANOVA Table for Tool Wear (FW) After Backward Elimination. 
Term Coef SE Coef T P 

CONSTANT 0.1217662 0.000945 128.899 0.000 

A 0.0157795 0.000738 21.371 0.000 

B 0.0019138 0.000738 2.592 0.021 

C 0.0094624 0.000738 12.815 0.000 

A*A -0.002615 0.000715 -3.656 0.003 

C*C -0.008978 0.000715 -12.554 0.000 

S = 0.00272861 
 

PRESS = 0.000277213 

R-Sq = 98.26%, R-Sq(pred) = 95.38%, R-Sq(adj) = 97.64% 

 

Table 7. Analysis of Variance for Tool Wear (FW). 

 
DF Seq SS Adj SS Adj MS F P 

Regression 5 0.005894 0.005894 0.001179 158.34 0 

Linear 3 0.004673 0.004673 0.001558 209.23 0 

Square 2 0.001221 0.001221 0.006917 41.93 0 

Interaction 3 0.015304 0.015304 0.000611 82 0 

Residual error 14 0.000104 0.000104 0.000007 
  

Lack-of-fit 9 0.000093 0.000093 0.00001 4.79 0.05 

Pure error 6 0.000011 0.000011 0.000002 
  

Total 19 0.005999 
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Twenty numbers of experiments have been conducted and the corresponding tool wear 

measured. Average tool wear is computed. The adequacy of the model is then checked using 

ANOVA. 
[13]

 

 

Checking the Adequacy by Response Surface Methodology Variation of Tool Wear with 

respect to input parameters 

 

    
Fig. 4. Main Effects Plot for Tool Wear (FW in mm). 

 

 
Fig. 5. Normal Probability Plot of Residuals for Tool Wear. 

 

 
Fig. 6. Plot of Residuals Vs Fits for Tool Wear. 

 
 

 

 
 

 
 

 

 
 



 

 

 

 

IJMDM (2016) 1–9 © JournalsPub 2016. All Rights Reserved                                                                    Page 7 

International Journal of Machine Design and Manufacturing 

Vol. 1: Issue 1 

www.journalspub.com 

 

 
 

Figure 7 illustrates the contour plot and 

response surfaces of Tool Wear with 

respect to input parameters RPM and Feed 

Rate. The value of Tool Wear is shown to 

decrease with decrease of RPM and Feed 

Rate. In the Figure 8 contour plot and 

response surface of Tool Wear with Feed 

Rate and Depth of Cut is depicted. Tool 

wear decreases with decrease in Feed Rate 

and Depth of Cut. 

  

   
Fig. 7. Variation in Tool Wear According to Change in RPM and Feed Rate. 

 

   
Fig. 8. Variation in Tool Wear According to Change in Feed Rate and Depth of Cut. 

 

   
Fig. 9. Variation in Tool Wear According to Change in RPM and Depth of Cut. 
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Figure 9 also depicts that the tool wear 

decreases with the decrease in respective 

RPM and depth of cut. Thus, lower the 

input parameters, lower the tool wear will 

be. 

 

CONFORMATION EXPERIMENT 

In the present study response surface 

equation is derived from quadratic 

regression fit, so to verify taking the 

independent variable values within the 

ranges for which the formula was derived 

performed their validity conformation test. 

The one conformation experiment was 

performed for Tool Wear. Table 8 shows 

the result of the conformation run and their 

comparisons with the predicted values 

designed for Tool Wear. It is observed that 

the calculated error is small (within 5%). 

This confirms the reproducibility of 

experimental conclusion. 
[14]

 

 

Table 8. Conformation Test Result and Comparison with Predicted Result as Per Model. 

RPM Feed rate(mm/rev) Depth of cut(mm) 
Tool wear(mm) 

Exp Predicted Error (%) 

230(1.6818) 0.032(1.6818) 0.159(1.6818) 0.045 0.043345 3.678673 

 

CONCLUSION 

Twenty numbers of experiments have been 

conducted on a CNC turning operation. 

EN is selected as a job material. The aim 

of the present investigation is to establish 

the correlation between the tool wear and 

the input variable like speed, feed, and 

depth of cut. The second order response 

model has been established and the model 

is validated through the ANOVA. 
[15]

  

 

Finally, optimum machining condition 

determined. This research can help other 

research and industries for developing a 

robust reliable knowledge base and early 

prediction of tool wear. 
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