A study on effects of mass flow rate and compressor pressure ratio on gas turbine cycle performance

Ali Kamranpey

Abstract


Gas turbines are rotating machines that work based on the energy of gases from combustion. Each gas turbine includes a compressor to compress air, a combustion chamber to mix air with fuel and ignite it, and a turbine to convert the energy of the hot, compressed gases into mechanical energy. Gas turbines have many advantages over steam turbines, such as small volume, quick installation, quick start-up, easy operation and the possibility of using different fuels in them. For this reason, in the last twenty years, the production of this type of turbines has increased twenty times. Researchers have always tried to increase the efficiency of the gas turbine by studying the gas turbine cycle and its individual components and parameters. The purpose of this research is to investigate mass flow rate and compressor pressure ratio on gas turbine performance. The results showed that with the increase in mass flow rate, the net work of the cycle increases with a constant slope. Also, the results showed that the increase in the compressor pressure ratio has a direct effect on the work of the compressor, the work of the turbine and the net work of the cycle and causes them to increase, which is more intense at the beginning, but after a specific range it is less intense. In addition, the results showed that by increasing the compressor pressure ratio from 8 to 20, the gas turbine cycle efficiency increases from 40% to 60%. The results of this research lead to a better understanding of the effect of thermodynamic parameters on the gas turbine cycle and can help researchers to find optimal conditions.


Keywords


gas turbine, compressor pressure ratio, mass flow rate, efficiency.

Full Text:

PDF

References


Perpignan, A. A., Rao, A. G., & Roekaerts, D. J. (2018). Flameless combustion and its potential towards gas turbines. Progress in Energy and Combustion Science, 69, 28-62.

Chiong, M. C., Chong, C. T., Ng, J. H., Lam, S. S., Tran, M. V., Chong, W. W. F., ... & Valera-Medina, A. (2018). Liquid biofuels production and emissions performance in gas turbines: A review. Energy Conversion and Management, 173, 640-658.

Liu, Z., & Karimi, I. A. (2020). Gas turbine performance prediction via machine learning. Energy, 192, 116627.

Doustdar, M. M., & Aminjan, K. K. (2019). Modeling the Thrust and Specific Fuel Consumption for a Hypothetical Turbojet Engine. International Journal of IC Engines and Gas Turbines, 5(1), 45-52.

Zarepour, G., & Aminjan, K. K. (2018). Modeling the Thrust and Specific Fuel Consumption for a Hypothetical Turbofan Engine. International Journal of IC Engines and Gas Turbines, 4(1), 1-10.

Ghazafi, S. M. (2022). Study on the Evolution of Drone Engine and the Future of Drone Propulsion. International Journal of IC Engines and Gas Turbines, 8(1), 10-19.

Navid Heydari. Investigation Various Types of Power Plants from Economic, Technical and Environmental Aspects. International Journal of I.C. Engines and Gas Turbines. 2022; 8(1): 1–9p.

Fentaye, A. D., Baheta, A. T., Gilani, S. I., & Kyprianidis, K. G. (2019). A review on gas turbine gas-path diagnostics: State-of-the-art methods, challenges and opportunities. Aerospace, 6(7), 83.

Azizi, M. A., & Brouwer, J. (2018). Progress in solid oxide fuel cell-gas turbine hybrid power systems: System design and analysis, transient operation, controls and optimization. Applied energy, 215, 237-289.

AMINJAN, K. K., RAHMANIVAHID, P., & HEIDARI, M. EFFECTS OF THERMODYNAMIC PARAMETERS ON PERFORMANCE OF GAS TURBINE CYCLE WITH REGENERATOR.

Heydari, A., & Doustdar, M. M. (2020). Effects of Compressor Pressure Ratio and Combustion Chamber Exhaust Gases Temperatures on Gas Turbine Cycle Performance. International Journal of IC Engines and Gas Turbines, 6(1), 1-6.

Naeim, K. A., Hegazi, A. A., Awad, M. M., & El-Emam, S. H. (2022). Thermodynamic analysis of gas turbine performance using the enthalpy–entropy approach. Case Studies in Thermal Engineering, 34, 102036.

Wilcox, M., Kurz, R., & Brun, K. (2012). Technology review of modern gas turbine inlet filtration systems. International Journal of Rotating Machinery, 2012.

Mahmoodi, M., & Aminjan, K. K. (2017). Numerical simulation of flow through sukhoi 24 air inlet. Computational Research Progress in Applied Science & Engineering (CRPASE), 3.

Hashmi, M. B., Abd Majid, M. A., & Lemma, T. A. (2020). Combined effect of inlet air cooling and fouling on performance of variable geometry industrial gas turbines. Alexandria Engineering Journal, 59(3), 1811-1821.

Parhrizkar, H., Aminjan, K. K., Doustdar, M. M., & Heydari, A. (2019). Optimization of S-Shaped Air Intake by Computational Fluid Dynamics. International Journal of Fluid Mechanics & Thermal Sciences, 5(2), 36.

Cha, S. H., Na, S. I., Lee, Y. H., & Kim, M. S. (2021). Thermodynamic analysis of a gas turbine inlet air cooling and recovering system in gas turbine and CO2 combined cycle using cold energy from LNG terminal. Energy Conversion and Management, 230, 113802.

Aminjan, K. K. (2018). A Review on the Change Process and the Evolution of Aircraft Engine Air Intake. International Journal of Mechanics and Design, 4(1), 15-22.

Alqallaf, J., Ali, N., Teixeira, J. A., & Addali, A. (2020). Solid particle erosion behaviour and protective coatings for gas turbine compressor blades—A review. Processes, 8(8), 984.

Lin, A., Zheng, Q., Jiang, Y., Lin, X., & Zhang, H. (2019). Sensitivity of air/mist non-equilibrium phase transition cooling to transient characteristics in a compressor of gas turbine. International Journal of Heat and Mass Transfer, 137, 882-894.

Farrahi, G. H., Tirehdast, M., Abad, E. M. K., Parsa, S., & Motakefpoor, M. (2011). Failure analysis of a gas turbine compressor. Engineering Failure Analysis, 18(1), 474-484.

Gicquel, L. Y., Staffelbach, G., & Poinsot, T. (2012). Large eddy simulations of gaseous flames in gas turbine combustion chambers. Progress in energy and combustion science, 38(6), 782-817.

Boudier, G., Gicquel, L. Y. M., Poinsot, T., Bissieres, D., & Bérat, C. (2007). Comparison of LES, RANS and experiments in an aeronautical gas turbine combustion chamber. Proceedings of the Combustion Institute, 31(2), 3075-3082.

Bulat, G., Jones, W. P., & Marquis, A. J. (2014). NO and CO formation in an industrial gas-turbine combustion chamber using LES with the Eulerian sub-grid PDF method. Combustion and Flame, 161(7), 1804-1825.

Alajmi, A. E. S. E. T., Adam, N. M., Hairuddin, A. A., & Abdullah, L. C. (2019). Fuel atomization in gas turbines: A review of novel technology. International Journal of Energy Research, 43(8), 3166-3181.

Khani Aminjan, K., Kundu, B., & Ganji, D. D. (2020). Study of pressure swirl atomizer with tangential input at design point and outside of design point. Physics of Fluids, 32(12), 127113.

Khani Aminjan, K., Heidari, M., & Rahmanivahid, P. (2021). Study of spiral path angle in pressure-swirl atomizer with spiral path. Archive of Applied Mechanics, 91(1), 33-46.

Rachner, M., Becker, J., Hassa, C., & Doerr, T. (2002). Modelling of the atomization of a plain liquid fuel jet in crossflow at gas turbine conditions. Aerospace Science and Technology, 6(7), 495-506.

Aminjan, K. K., Ghodrat, M., Escobedo-diaz, J. P., Heidari, M., Chitt, M., & Hajivand, M. (2022). Study on inlet pressure and Reynolds number in pressure-swirl atomizer with spiral path. International Communications in Heat and Mass Transfer, 137, 106231.

Ali Kamranpey. Review on Main Equations for Measuring Spray Properties in Centrifugal Injectors. Journal of Industrial Safety Engineering. 2021; 8(3): 17–23p

Khani Aminjan, K., Heidari, M., Ganji, D. D., Aliakbari, M., Salehi, F., & Ghodrat, M. (2021). Study of pressure-swirl atomizer with spiral path at design point and outside of design point. Physics of Fluids, 33(9), 093305.

Doustdar, M. M., Alipour, H., & Aliakbari, M. (2022). Estimating Spray Characteristics of the Air-Blast atomizer of a Typical Jet Engine using Definition of the New Non-dimensional Number K: Numerical and Experimental Study. Tehnički vjesnik, 29(1), 208-214.

Kiumars Khani Aminjan , Mohammad Mahdi Heydari, Esmail Valizadeh. 2018. Numerical Analysis of the 3D Flow in Swirl Injector with Spiral Paths. Computational Research Progress in Applied Science & Engineering.

Shanmugadas, K. P., Chakravarthy, S. R., Chiranthan, R. N., Sekar, J., & Krishnaswami, S. (2018). Characterization of wall filming and atomization inside a gas-turbine swirl injector. Experiments in Fluids, 59(10), 1-26.

Jenish, I., Appadurai, M., & Raj, E. F. I. (2021). CFD Analysis of modified rushton turbine impeller. Int. J. Sci. Manag. Stud.(IJSMS), 4, 8-13.

Aminjan, K. K., Heidari, M., Rahmanivahid, P., Alipour, H., & Khashehchi, M. (2021). Design and Simulation of Radial Flow Turbine Impeller and Investigation Thermodynamic Properties of Flow in LE and TE.

Yang, J., Zhao, F., Zhang, M., Liu, Y., & Wang, X. (2021). Numerical Analysis of Labyrinth Seal Performance for the Impeller Backface Cavity of a Supercritical CO2 Radial In flow Turbine. Computer Modeling in Engineering & Sciences, 126(3), 935-953.

Zhou, Q., Yin, Z., Zhang, H., Wang, T., Sun, W., & Tan, C. (2020). Performance analysis and optimized control strategy for a three-shaft, recuperated gas turbine with power turbine variable area nozzle. Applied Thermal Engineering, 164, 114353.

Matsunuma, T., Yoshida, H., Iki, N., Ebara, T., Sodeoka, S., Inoue, T., & Suzuki, M. (2005, January). Micro gas turbine with ceramic nozzle and rotor. In Turbo Expo: Power for Land, Sea, and Air (Vol. 46997, pp. 973-979).

Kulor, F., Markus, E. D., & Kanzumba, K. (2021). Design and control challenges of hybrid, dual nozzle gas turbine power generating plant: A critical review. Energy Reports, 7, 324-335.

Chyu, M. K., & Siw, S. C. (2013). Recent advances of internal cooling techniques for gas turbine airfoils. Journal of Thermal Science and Engineering Applications, 5(2).

Talya, S. S., Rajadas, J. N., & Chattopadhyay, A. (2000). Multidisciplinary optimization for gas turbine airfoil design. Inverse Problems in Engineering, 8(3), 283-308.

Heidari, M., Rahmanivahid, P., & Aminjan, K. K. (2020). Aerodynamic Analysis of Double Wedge Airfoil 16.5%@ 50% in Different Angle of Attack at Supersonic Flow. Solid State Technology, 63(6).

Chyu, M. K., & Siw, S. C. (2013). Recent advances of internal cooling techniques for gas turbine airfoils. Journal of Thermal Science and Engineering Applications, 5(2).

Aminjan, K. K. (2018). Aerodynamic Analysis of NACA 65-2012 Airfoils at Different Attack Angles with Computational Fluid Dynamics (CFD) Method. International Journal of Mechanical Handling and Automation, 4(2), 9-16.

Kamranpay, A., & Mehrabadi, A. Numerical Analysis of NACA Airfoil 0012 at Different Attack Angles and Obtaining its Aerodynamic Coefficients.

Horbach, T., Schulz, A., & Bauer, H. J. (2011). Trailing edge film cooling of gas turbine airfoils—external cooling performance of various internal pin fin configurations.

Korakianitis, T., Rezaienia, M. A., Hamakhan, I. A., Avital, E. J., & Williams, J. J. R. (2012). Aerodynamic improvements of wind-turbine airfoil geometries with the prescribed surface curvature distribution blade design (CIRCLE) method. Journal of engineering for gas turbines and power, 134(8).

Akbari, P. (2021). Study of NACA 6212 Airfoil and Investigation of its Aerodynamic Properties in Different Angles of Attack. International Journal of Mechanical Dynamics & Analysis, 7(1), 43-49p.

Montis, M., Niehuis, R., & Fiala, A. (2010, October). Effect of surface roughness on loss behaviour, aerodynamic loading and boundary layer development of a low-pressure gas turbine airfoil. In Turbo Expo: Power for Land, Sea, and Air (Vol. 44021, pp. 1535-1547).

Stepanov, O. A., Rydalina, N. V., Antonova, E. O., Aksenov, B. G., Derevianko, O. V., Akhmetova, I. G., & Zunino, P. (2019). The possibility of increasing the operating efficiency of gas turbines at compressor stations of main gas pipelines. International Journal of Civil Engineering and Technology, 10(2), 2130-2137.

Wilson, D. G. (1984). Design of high-efficiency turbomachinery and gas turbines.

Wilcock, R. C., Young, J. B., & Horlock, J. H. (2005). The effect of turbine blade cooling on the cycle efficiency of gas turbine power cycles. J. Eng. Gas Turbines Power, 127(1), 109-120.




DOI: https://doi.org/10.37628/ijicegt.v8i2.1476

Refbacks

  • There are currently no refbacks.