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Abstract 

A bearing is a machine element that constrains relative motion and reduces friction between 

moving parts in the desired motion. A faulty bearing is a serious threat to the functionality of 

a machine, be it big or small. Thus, it is essential to diagnose the faults in the bearings at an 

early stage, so as to reduce the losses that might be incurred in money and time. Inability to 

meet the required demand of products in the specific time due to improper functioning of the 

bearing is another reason of concern. Hence, there is a necessity for continuous monitoring 

of the bearing.  The vibrations and the sounds produced by the bearings from good and 

simulated faulty conditions can be effectively used to detect the faults in these bearings. The 

use of Variational Mode Decomposition (VMD) in the study allows decomposition of the 

signal into various modes by identifying a compact frequency support around its central 

frequency, such that adding all the modes reconstructs the original signal. VMD finds 

intrinsic mode functions on central frequencies using alternating direction multiplier method 

(ADMM). Worthwhile statistical features can be extracted from VMD processed signals. J48 

decision tree algorithm was used to identify the useful features and the selected features were 

used for classification using the Naïve Bayes Classifier. The performance analysis of Naïve 

Bayes Classifier is elaborately discussed.  
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INTRODUCTION 

Bearings are vital in our modern world. 

Without them, many of the machines, 

devices and services which are now taken 

for granted, would not function. It is an 

inherently efficient product and its use and 

development can contribute to solutions 

that save energy. Timely maintenance of 

bearings is essential to ensure smooth 

functioning of the machines. Failure to 

detect the fault in the bearing will lead to 

huge economic losses and physical 

damages. Hence it is essential to carry out 

an experimental study which provides a 

method for its proper monitoring and fault 

diagnosis. A standard rolling-element 

bearing consists of an inner and outer 

raceway with a set of balls or rolling-

elements placed between these two 

raceways and held by a cage. 
[1]

  

 

The bearing faults can be caused due to 

improper installations of the bearing onto 

the shaft or into the housing, misalignment 

of the bearing, contamination, corrosion, 

improper lubrication, brinelling or simply 

due to wear-out. 
[23]

 Researches and 

developments conducted in universities 
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and in industries have yielded means for 

predictive condition monitoring and fault 

detection algorithms. 

 

The study focussed on the use of physical 

parameters such as sound, acoustic 

emission, vibration, and wear debris for 

the detection and diagnosis of the inchoate 

faults as it is very difficult to measure the 

severity of the localised faults directly 

when the bearings are running. A general 

review of monitoring and fault diagnosis 

techniques can be found in [4, 5]. The 

recent studies suggest that the signature 

analysis of data from acceleration or 

velocity transducers mounted on the 

bearing housing or machine casing is 

necessary for diagnostic techniques for 

rolling element bearings. 
[6]

 This results in 

obscured vibration signals from bearings 

due to the other components in the 

associated machinery. Hence, Kim 
[6] 

experimented with an eddy current 

transducer for this application, however 

failed to discuss how the behaviour of the 

outer race deflection associated with 

bearing frequencies for a bearing with 

raceway defects were described through a 

time-domain representation. The 

relationship of spike signals in outer race 

deflection to raceway and bearing defects 

has been established by Yu et al. 
[7,8]

. The 

characteristic features of the fault-related 

signals generated by the rotating machine 

elements are often disguised by sounds 

and vibrations. 
[9, 10]

 

 

While taking fast Fourier transform of 

vibration signals, the harmonics and noise 

overlaps with frequency components. This 

makes it difficult to read the actual 

frequency components present in the 

signal. The non-stationary nature of the 

signals makes the situation further worse 

by changing the frequency component 

itself. Hence analysis of the above signals 

in faulty operating conditions becomes 

difficult. Machine learning can be an 

effective tool for fault diagnosis. 

Sugumaran et al. have used Bayes 

classifier, 
[11]

 decision tree 
[12] 

and 

proximal support vector machine 
[13]

 in 

fault diagnosis of roller bearing which has 

provided significant classification 

accuracies. 

 

At the insight of these circumstances, 

researchers were forced to pay their 

attention on signal processing methods for 

improving fault classification tools. Recent 

studies illustrate the use of Empirical 

Mode Decomposition (EMD) to detect 

nascent faults in bearings. 
[14–16]

 The 

Intrinsic Mode Functions (IMF) doesn’t 

work well with non-stationary signals. Lei 

et al. used EMD to extract features from 

signals for classifying the different modes 

and degrees of gear faults. 
[17]

 However, 

EMD lacks mathematical theory 

foundation; the technique is faced with the 

difficulty of being essentially defined by 

an algorithm, and therefore of not 

admitting an analytical formulation which 

would allow for a theoretical analysis and 

performance evaluation. 
[18]

 The wavelet 

can represent signals in time frequency 

plane; however, it has some limitations. 
[19]

  

The present study used a new pre-

processing technique developed to 

decompose the signal into various modes 

or IMF’s using calculus of variations. The 

modes have compact frequency support 

around the central frequency. Alternating 

direction multiplier method (ADMM) was 

used as optimization tool to find such 

central frequencies concurrently. The main 

purpose of decomposing a signal is to 

identify various components of the signal.  

 

This work focuses on a new algorithm-

variational mode decomposition (VMD), 

which extracts different modes present in 

the signal. In the present study, an attempt 

is made to exploit vibration signals for the 

purpose of fault diagnosis of roller 

bearings. To extract some meaningful 

features, the vibration signals were 

preliminarily pre-processed for finding the 

modes and IMFs. Then, useful statistical 

features like median, variance, standard 
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deviation, kurtosis etc., were extracted. 

With the extracted statistical features, 

classification was carried out using Naive 

Bayes classifier. 

 

EXPERIMENTAL SETUP AND 

PROCEDURE 

A Machinery fault simulator is used for 

simulating faults in machine components 

such as bearings, gears, belts etc.and was 

used to study its behaviour through the 

information obtained from sensors as 

shown in Figure 1. A DC motor is 

mounted on the motor-support. The motor 

can take 0.5 HP power and its speed can be 

varied from 0 to 3000 rpm. The motor has 

a drive circuit. Its speed can be controlled 

from the panel. The motor shaft is 

connected to a set of bearings through a 

flexible coupling made of Aluminium. The 

diameter of the shaft is 20 mm. The 

flexible coupling reduces the transmission 

of motor vibration to other machine parts. 

The shaft is supported by two bearings, 

which are mounted on the bearing 

housings. The bearing housing is made of 

the split type so that it can be opened and 

bearings replaced easily. To prevent the 

shaft from mechanical damage during 

bearing studies, a sleeve is used between 

shaft and inner race of bearing. The outer 

diameter of sleeve is 30 mm. In between 

the bearing housings provision is made on 

the shaft for loading the bearings using 

dead weights. 

 

 
Fig.1: The Machinery Fault Simulator. 

 

A small pulley is attached at the end of the 

shaft to transmit the rotating motion to the 

gearbox through belt drive. Fault 

simulations on belt drives can be studied 

using this provision. There is a belt 

tensioner to tighten the belt. By increasing 

the height of the belt tensioner, the belt can 

be tightened. The other side of the belt is 

connected to a pulley, which is in turn 

connected to a gearbox. The gearbox has 

two bevel gears perpendicular to each 

other. The gearbox has an electro-

mechanical brake assembly to load the 

gear. The other side of the gear is attached 

to a disc, which is connected to a crank. 

This converts rotary motion into 

reciprocating motion. The crank is 

connected to slider shaft through slide. The 

slide shaft is supported by two bush 

housings. This mechanism is to simulate 

fault conditions of reciprocating 

mechanisms. 

Electric Motor

Belt Drive

Tension 

Adjustment of 

Belt

Accelerometer 

Pickup

Proximity 

sensor for 

measuring 

gear speed

Control Panel

Sensor for 

measuring 

motor speed
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The control panel has a set of controls and 

displays as described below. There is an 

ON/OFF switch for DC motor. The speed 

can be varied by adjusting a potentiometer 

setting through a knob. To know the speed 

of the motor and speed of the gear, 

separate proximity pick ups (speed 

sensors) are fixed; both of them are 

connected to a single display. There is a 

selector to choose the speed of the motor 

or gear. As load increases, the current 

drawn by the motor increases steadily. The 

rate of loading can be monitored using the 

current. The current drawn by the motor 

can be read from the ammeter on the 

panel. There is a temperature sensor 

(thermocouple) to measure the temperature 

at the point of interest, where it is inserted. 

Thermocouple can be fixed at any location 

and the corresponding temperature can be 

read. There is a switch to control the brake 

of the gear. The whole set up is fixed on to 

the Aluminium base plate, which is 

mounted on two channels. At the bottom 

of the channel anti-vibration mountings are 

provided to reduce the transmission of 

vibration between setup and earth. 

 

Fault Simulation on Bearings 

Understanding why a bearing has failed is 

one of the best ways to prevent the same 

from happening again. We often come 

across cracks in the raceway ring and 

rolling elements, which is the most 

commonly found bearing defect. 

Continued use under this condition leads 

to larger cracks or fractures. For our 

experimental study, we have simulated the 

faults in the bearings as it is difficult to get 

three such defective bearings of the same 

type. Four cylindrical roller bearings 

(NU2206) were taken for study, out of 

which one was a brand new bearing devoid 

of any defects. In the other three roller 

bearings, defects were created using wire-

cut Electric Discharge Machining (EDM), 

which ensured precisely defined defects. 

 

 
Fig. 2: Bearings Under Different Fault Conditions. 

 

The size of outer race defect is 0.0.652 mm 

wide and 0.981 mm deep and that of inner 

race defect is 0.525 mm wide and 

0.827 mm deep. The images of the 

bearings with the simulated faults are 

shown in Figure 2. 
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Variational Mode Decomposition 

VMD decomposes the signal into various 

modes or intrinsic mode functions using 

calculus of variation.  Each mode of the 

signal is assumed to have compact 

frequency support around a central 

frequency. VMD tries to find out these 

central frequencies and intrinsic mode 

functions centred on those frequencies 

concurrently using an optimization 

methodology called ADMM. The original 

formulation of the optimization problem is 

continuous in time domain.  

 

VMD is formulated as; Minimize the sum 

of the bandwidths of k modes subject to 

the condition that sum of the k modes is 

equal to the original signal.  The 

unknowns are k central   frequencies and k 

functions centred at those frequencies. 

Since part of the unknowns is function, 

calculus of variation is applied to derive 

the optimal functions.  

 

Bandwidth of an AM-FM signal primarily 

depends on both, with the maximum 

deviation of the instantaneous frequency 

  kk tf   max~  and the rate of 

change of instantaneous frequency. 

Dragomiretskiy and Zosso proposed a 

function that can measure the bandwidth of 

an intrinsic mode function ( )ku t .  At first 

they computed Hilbert transform of ( )ku t . 

Let it be ( )H
ku t . Then formed an analytic 

function  ( ) ( )H
k ku t ju t . The frequency 

spectrum of this function is one sided 

(exist only for positive frequency) and 

assumed to be centred on k .  By 

multiplying this analytical signal with 
kj te 

, the signal is frequency translated to 

be centred at origin. The integral of the 

square of the time derivative of this 

frequency translated signal is a measure of 

bandwidth of the intrinsic mode function 

( )ku t .   

Let   ( ) ( ) ( ) kj tM H
k k ku t u t ju t e     

It is a function whose spectrum is around 

origin (baseband).  Magnitude of time 

derivative of this function when integrated 

over time is a measure of bandwidth.  

Hence, 

 

     ( ) ( )M M
k t k t ku t u t dt     

Where,  ( ) ( ) ( )M
t k t k

j
u t t u t

t



         

 

The integral can also expressed as a norm.  
2

2

( ) ( )k t k

j
t u t

t
 


          

 

The sum of bandwidths of k modes is given by
1

K

k
k




 .The resulting variational formulation 

is as follows: 
2

,
2

min ( ) ( ) k

k k

j t
t ku

k

j
t u t e

t








           
   

  

. . k
k

st u f  

Where f  is the original signal.  
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The augmented Lagrangian multiplier method converts this into an unconstrained 

optimization problem as follows: 

 

 
2 2

22

, , ( ) ( ) ,kj t
k k t k k k

k k k

j
L u w t u t e f u f u

t
   


             

   
         Eq. (1) 

In ADMM philosophy, one variable at a 

time is solved assuming all others are 

known. 

Hence, the formula for updating ku   at the 

‘n+1’ the iteration is as follows: 

 

Update for u terms 
2 2

1

( ) 22

argmin ( ) ( ) ,k

k

j tn
k t k i i

u t i i

j
u t u t e f u f u

t
  


              

   
   

By the absorbing the last inner product which is basically  ( ) ( ) ( )i
i

t f t u t dt  
 

 
  in to the 

term 

2 2

2

( ) ( )i i
i i

f u f t u t dt
 

   
 

  , then 

2 2

2 2

,
2i i i

i i i

f u f u f u
         

 

Therefore,  
2 2

1

( ) 22

argmin ( ) ( )
2

k

k

j tn
k t k i

u t k i

j
u t u t e f u

t
  


             

   
   

 

This problem can be solved in spectral 

domain by noting the fact that norm in 

time domain is same as norm in frequency 

domain.  

The following results are used in Fourier 

transform  

 

   ˆ ˆ( ) ( ) ( ) ( )k k t k ku t u u t j u      

  ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) 1 sgn ( )k k k k k k

j j
u t u t u t u t u t u

t t
   

 
          
 

 

 

Note that,  

For negative,   ˆ1 sgn ( ) 0ku    

And for positive,    ˆ ˆ1 sgn ( ) 2 ( )k ku u     

     ˆ ˆ( ) ( ) 1 sgn ( ) ( ) ( ) 1 sgn ( )kj t
k k k k k k k k

j j
u t u t u u t u t e u

t t
     

 
            

 
 

Therefore, 

  
2

21

2ˆ ( )
2

ˆ
ˆˆ ˆargmin 1 sgn ( )

2k

n
k k k k i

u i

u j u f u


              
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Replacing k     

  
2

21

2ˆ ( )
2

ˆ
ˆˆ ˆargmin ( ) 1 sgn ( )

2k

n
k k k i

u i

u j u f u


            

 

In the above expression, the first term vanishes for negative frequencies. 

 

          2

2
ˆ ˆ ˆ1 sgn ( ) ( ) 1 sgn ( ) ( ) 1 sgn ( )k k k k k k k

w

u j u j u d                   

=
22

0

ˆ4( ) ( )k ku d   


  

Second term is symmetric around origin, therefore  
2

02

ˆ ˆ ˆ ˆ ˆ
ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ( ) 2 ( )

2 2 2 2 2i i i i i
i i i i i

f u f u f u d f u f u d
       

 



      
                             

     

Also,
ˆ

ˆ ˆ( )
2i

i

f u


 
   

 
  being a complex number 

ˆ
ˆ ˆ( )

2i
i

f u


 
   

 


ˆ
ˆ ˆ

2i
i

f u
 

  
 
 
  = 

2ˆ
ˆ ˆ

2i
i

f u


  , where  represent magnitude of the 

complex number.   

Therefore,   
2

21 2

ˆ ( ), 0 0

ˆ
ˆˆ ˆ ˆargmin 4 ( ) ( ) 2

2k

n
k k k i

u i

u u f u d
 

   






 
     
 
 

  

Here unknown is a function. Hence, apply Euler Lagrangian condition to obtain the solution. 
2

22
ˆ

ˆˆ ˆ 4( ) ( ) 2
2k k i

i

Let F u f u
        

2
ˆ

ˆˆ ˆ0 8 ( ) 4 ( 1) 0
ˆ 2k k i

ik

dF
u f u

du
 

 
         

 
  

 2 2
ˆ ˆ

ˆ ˆˆ ˆ ˆ ˆ ˆ2 ( ) 1 2 ( )
2 2k k k i k k i

i k i k

u u f u u f u
    

 

   
                 

   
   

 
1

2

ˆ 1ˆˆ ˆ
2 1 2( )

n
k i

i k k

u f u


 




 
       

  ,  0  

Update for k  s; 

2

1

2

argmin ( ) ( ) k

k

j tn
k t k

j
t u t e

t



 


          

   
 

   21

2
ˆargmin 1 sgn ( )

k

n
k k k kj u


           
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     21

2
ˆargmin 1 sgn ( )

k

n
k k kj u


         

 2 21

0
ˆargmin ( )

k

n
k k ku d


    

    

Here 1n
k
  is given by the solution of        2 2

0
ˆ ( ) 0k k

k

d
u d

d
   




   

  2

0
ˆ2 ( ) 0k ku d   


    

2

1 0

2

0

ˆ ( )
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Update for   (Lamda) 

 1 1( )n n n
kf u t       

Final algorithm for VMD: 
1 1 1̂ˆˆinitialize , , , n 0k ku     

repeat 

1n n   

for 1:  dok K ˆUpdate  for all 0ku   

1

1
2

ˆˆ ˆ ˆ
2ˆ

1 2 ( )

n
n n
i ii k i kn

k n
k

f u u
u



 


 

  


 

 
  

Eq. (2)

    

 

Update :k
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k
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k

u d
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  


 













  

Eq. (3)

     

 

 

end for  

Dual ascent for all 0:  
1 1ˆˆ ˆ ˆ( )n n n

k
k

f u                        Eq. (4)

        

 

2 21

2 2
ˆ ˆ ˆuntil convergence: n n n
k k kk

u u u     

 

Discretization of Frequency 

It is first assumed that length of the 

mirrored signal in the time domain is one.  

If total length of the mirrored signal in 

terms of number of discrete values is T, 

then sampling interval is 1/T. The discrete 

frequency  is assumed to vary from -0.5 

to +0.5 so that it represents normalized 

discrete frequency. It must be noted that 

algorithm construct Fourier transform of 

different mode function values for positive 

frequencies only. The other half can be 

easily created by conjugating and 

reflecting on the left side.  

 

Once all the mode functions in the 

frequency domain are obtained, then 

obtain the time domain mode functions by 

taking inverse Fourier transform. These 

mode functions correspond to mirrored 

signal. Then cut off the appended 

(reflected portions) part of the signal to 
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obtain the desired intrinsic mode 

functions. 

 

Feature Extraction 

Descriptive statistical parameters such as 

mean, kurtosis, standard deviation, and 

variance extracted from the vibration 

signals are extracted from the vibrational 

signals to serve as features.  

 

They are named as ‘statistical features’ 

here. Brief descriptions about the extracted 

features are given below. 

 

(a) Standard deviation: This is a measure 

of the effective energy or power 

content of the vibration signal. The 

following formula was used for 

computation of standard deviation. 

 

 22

Standard Deviation 
( 1)

x x

n n





 

 

 

(b) Sample variance: It is variance of the 

signal points and the following 

formula was used for computation of 

sample variance. 

 

 22

Sample Variance 
( 1)

x x

n n





 

 

(c) Kurtosis: Kurtosis indicates the 

flatness or the spikiness of the signal. Its 

value is very low for normal condition of 

the bearing and high for faulty condition 

of the bearing due to the spiky nature of 

the signal. 

4 2( 1) 3( 1)
Kurtosis

( 1)( 2)( 3) ( 2)( 3)
ix xn n n

n n n s n n

              


 

where‘s’ is the sample standard deviation. 

 (d) Mean: Mean is computed as arithmetic 

average of all points in the signal. 

1

Mean
n

i
i

x


  

 

Feature Selection with Decision Tree  

All the statistical features extracted from 

the vibrational signals do not contribute 

equally to the classification accuracy. It 

may be observed that some features are 

significant for the classification process, 

while some are purely irrelevant. Thus, the 

process of selecting only the relevant 

statistical features for the classification 

process so as to reduce the computational 

effort is known as feature selection. In the 

present study, the dataset is used with J48 

algorithm to generate the decision tree 

which facilitates the feature selection 

process. The generated decision tree is 

shown in Figure 3. 

 

The features that are appearing on top of 

the decision tree are good for 

classification. The ones that do not appear 

are not useful for classification. The 

features appearing in the bottom of the tree 

are relatively less important ones. Hence, 

one can consciously choose or omit 

depending on the classification accuracy 

requirement and computational resources 

available.  
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Fig. 3: Decision Tree. 

 

Classifier 

Classification is the problem of identifying 

to which of a set of categories a new 

observation belongs, on the basis of a 

training set of data containing observations 

whose category membership is known.  

 

An algorithm that implements 

classification, especially in a concrete 

implementation, is known as a classifier. 

Naïve Bayes Classifier has been used in 

the present study. The Naive Bayesian 

classifier is based on Bayes’ theorem with 

independence assumptions between 

predictors.  

 

A Naive Bayesian model is easy to build, 

with no complicated iterative parameter 

estimation which makes it particularly 

useful for very large datasets. Despite its 

simplicity, the Naive Bayesian classifier 

often does surprisingly well and is widely 

used because it often outperforms more 

sophisticated classification methods.  

 

The Naïve Bayes Classifier is based on 

Bayes rule that assumes that the attributes 

A1,A2,A3,……An, are all conditionally  

 

independent of one another given an 

attribute B. This assumption is very 

beneficial as it simplifies the 

representation of  (     ) and reduces the 

problem of estimating it from the training 

data. When A contains n attributes which 

are conditionally independent of one 

another given B, we have 

 

 (           )   ∏ (      )

 

   

 

 

When Ai and B are Boolean variables, only 

2n parameters are needed to define  

 (              ) with corresponding 

i, j, k values. This is a substantial reduction 

as compared to the  (    )  parameters 

needed to characterize  (     ), assuming 

there is no conditional independence 

assumption. The main focus is to train a 

classifier that will output the probability 

distribution over possible values of B, for 

each new instance A that needs to be 

classified. The expression for probability 

that B will take on its K
th

 possible value 

according to Bayes rule is  
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 (              )   
 (    ) (                 )

∑  (     ) (                ) 

 

 

where the sum is taken over all possible 

values of bj of B. Now assuming that Ai is 

conditionally independent given B, we can 

rewrite the above equation as 

 (              )   
 (    )∏  (          ) 

∑  (     ) ∏  (          ) 

 

 

This is the fundamental equation for the Naïve Bayes Classifier. 

 

RESULTS AND DISCUSSION 

A total of 420 vibrational signals were 

collected for normal and abnormal 

conditions from a helical gear box; 60 

signals from each class. The statistical 

features extracted from these signals were 

selected as features and act as input to the 

algorithm. The corresponding output 

together forms the dataset. 

 

 

 

Effect of Number of Features on 

Classification Accuracy 

As discussed earlier, out of all the 

statistical features extracted from the 

vibration signals, it is not certain that all 

the features contribute equally to the 

classification accuracy. The process of 

reducing the number of input features for 

classification is known as dimensionality 

reduction. Table 1 and Figure 4 illustrate 

the variation of classification accuracy 

with change in the number of features. 

 

Table 1: Classification Accuracy of Naïve Bayes Classifier. 

Number of Features Classification Accuracy( in % ) 

1 83.50 

2 97.00 

3 99.25 

4 99.25 

5 99.25 

6 99.00 

7 92.25 

8 95.50 

9 97.25 

10 95.00 

11 94.00 

12 90.50 

13 89.50 

14 95.25 

15 96.25 

 

It is to be noted that the maximum 

classification accuracy is obtained with 

only five features being used instead of the 

total 15 features. 

 

Statistical Features with Naïve Bayes 

Classifier 

Hemantha Kumar et al.
[11]

 recorded 

vibrational signal samples and used it for 

generating the decision tree for the purpose 

of feature selection. The decision tree 
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generated is shown in Figure 4. The class 

wise accuracy generated by this  

study is illustrated in Table 2. The results 

indicate that it generates a classification 

accuracy of 85% only. 

 

Table 2: Class Wise Accuracy of Naïve Bayes Classifier. 

 TP 

Rate 

FP 

Rate 

Precision Recall F-Measure ROC 

Area 

Class 

 0.833 0.067 0.862 0.833 0.847 0.968 Healthy 

 0.867 0.083 0.839 0.867 0.852 0.968 IRF 

 1 0 1 1 1 1 ORF 

Weighted 

Avg. 

0.9 0.05 0.9 0.9 0.9 0.979  

Note: IRF: inner race fault; ORF: outer race fault 

 

Variational Mode Decomposition with 

Naïve Bayes Classifier 

The descriptive statistical features after 

pre-processing were used with Naïve 

Bayes Classifier and the results are  

 

 

discussed here. The parameters considered 

for the classifier are shown in Table 3. 

These parameters play a vital role as 

altering these parameters can result in a 

significant change in the classification 

accuracy. 

 

Table 3: Classifier Parameters for Naïve Bayes Classifier. 

Parameters for Evaluation Values 

Model performance evaluation 10-fold stratified cross validation 

Model building time 0.15 seconds 

Display model in old format True 

Estimator Kernel 

Use supervised discretization False 

 

 
Fig. 4: Decision tree. 

Table 4: Improvement in Classification Accuracy on Using VMD Pre-Processing. 

Sl 

No. 

Classification 

Algorithm 

Classification Accuracy (%) 
Improvement 

(%) 
Without VMD Pre-

Processing 

With VMD Pre-

Processing 

1 Naïve Bayes 85 99.25 14.25 

The classification accuracy of the Naïve 

Bayes classifier using these optimised 

parameters was found out to be 99.25%. 

The details of misclassification are 



                               
 
 
 

 

IJRA (2016) 7–20 © Journals Pub 2016. All Rights Reserved                                                                    Page 19 

International Journal of Robotics and Automation 
Vol. 1: Issue 1  

www.journalspub.com 

 

presented in the form of a confusion matrix in Table 5. 

          

Table 5: Confusion Matrix for Naïve Bayes Classifier. 

 

 

 

 

 

 

 

Note: Good: signals from the bearing which is flawless; IORF: inner and outer race fault. 

 

Summarizing the observations from the 

Confusion matrix, one can conclude that 

the classifier is performing efficiently in 

fault identification (100%) ensuring that a 

false diagnosis will not take place. The 

diagonal of the confusion matrix 

represents the correctly classified signals 

and other elements are the misclassified 

ones. In condition monitoring, the priority 

is fault identification and fault 

classification comes second. Referring to 

Table 5, it can be seen that 

misclassifications between the faulty and 

the good signals are almost zero. However 

there are some misclassifications among 

the faulty signals. Thus the classifier’s 

performance is highly encouraging seeing 

99.25% classification accuracy. 

 

CONCLUSION  

Faults in the bearings possess a major 

threat to the machinery in terms of its 

performance and can also lead to economic 

loss as well as the physical damages. Thus 

it is essential for the continuous 

monitoring of the bearing. From this study, 

it is apparent that Machine learning is a 

simple but powerful tool for fault 

diagnosis. The introduction of VMD as a 

new signal pre-processing technique along 

with Naïve Bayes Classifier has provided 

remarkable performance characteristics 

with a classification accuracy reaching 

99.25%. For bench marking the new 

features and classier, statistical features 

extracted from raw signal (without VMD 

pre-processing) and Naïve Bayes Classifier 

respectively have been taken up. The 

accuracy achieved by VMD pre-processed 

vibration signals is far superior to that 

generated using the signals which were not 

VMD pre-processed (85%). From the 

results and discussions, we can conclude 

that VMD pre-processed signals with 

Naïve Bayes Classifier perform flawlessly 

in fault diagnosis of bearings. Its ability to 

distinguish between good and faulty 

signals with 100% accuracy motivates its 

use in the industry. 
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