Open Access Open Access  Restricted Access Subscription or Fee Access

Study of Attenuation Coefficient of Cu, Ag & Au

A. K. Upadhyay

Abstract


The Absorption coefficient or Ultrasonic attenuation of Cu, Ag & Au at the range of 1 GHz using the calculated values of mason non-linearity parameter, ultrasonic Gruneisen parameter, thermal relaxation time and Debye average velocity along with ultrasonic wave velocity and elastic constant have been studied. This is useful to understanding the mechanism of interaction between acoustic wave and crystal lattice. The work is also beneficial to resolve various problem in ultrasonic studies. The result shows that the comparison of attenuation coefficient of metals viz Cu, Ag & Au along the different directions bring out some systematic features. It can be seen that the attenuation coefficient generally increases with increasing molecular weight and decreasing Debye temperature within the different group of solids.


Full Text:

PDF

References


Upadhyay A.K. Analysis of Absorption Coefficient of Covalent Materials. International Journal of Solid State Materials. 2018; 4(1): 23-28.

Upadhyay A.K. and Sharma B.S. Analysis of Attenuation Coefficient of Halides & Chalcogenides. International Journal of Engineering Technology Science and Research. 2017; 4(12): 1236-1243.

Yadav R.R. and Singh D. Ultrasonic Absorption at Low Temperatures. J. Acoust Soc. Ind. 2001;9(1): 220-224.

Raju K.M., Kailash,.Srivastava R.K. Orientation dependence of Ultrasonic Attenuation. Physics Procedia.2010; 3(1): 927-933.

Kor S.K., Yadav R.R. and Kailash. Ultrasonic Attenuation in Dielectric Crystals. J Phys. Soc. Japan. 1986; 55(1): 207-212.

Singh Devraj, Yadav R.R., Tiwari Arvind Kumar. Ultrasonic Attenuation in Semiconductors. Indian J. Pure & Appl. Physics. 2002; 40: 845-849.

Kor S.K. and Singh R.K. Ultrasonic attenuation in normal valence semiconductors. Acustica.1994; 80(1): 83-87.

Lambade S.D. Sahasrabudhe G.G and Rajagopalan S. Temperature variation of ultrasonic attenuation and nonlinearity parameter in LiF and NaF. J. Appl. Phys. 1995; 78(11): 6525-6533.

Sahsrabudhe G.G. and Lambade S.D. Study of elastic and acoustic nonlinearities in solids at room temperature. J. Phys. Chem. Solids.1998; 59(5); 789-808.

Mason W.P. Piezoelectric crystals and their applications to ultrasonics.1st ed. Princeton, New York : D Van Nostrand; 1950.

Akhiezer A. On The Absorption of Sound in Solids. Journal of Physics, Moscow.1939;1(1): 277-287.

Mason W.P. and Bateman T.B. Ultrasonic Wave Propagation in Pure Silicon and Germanium. J. Acoust. Soc. Am. 1964; 36(4): 645-655.

Brugger K. Generalized Grüneisen Parameters in the Anisotropic Debye Model. Phys. Rev. A. 1965;137(6A): 1826-1827.

Lambade S.D. Sahasrabudhe G.G, Rajagopalan S. Temperature dependence of acoustic attenuation in silicon. Phys. Rev. B.1995; 51(22):15861-15866.

Nava R. and Romero J. Ultrasonic Grüneisen Parameter for Non-Conducting Cubic Crystals. J. Accoust. Soc. Am. 1978; 64(2):529-532.

Merkulov L.G., Kovalenok R.V. and Konovodehenko E.V. Orientation Dependence of the Absorption of Ultrasound in Alkali Halide Crystals. Soviet Physics Solid State.1970; 11: 2241-2248.

H.H. Barrett, M.G Hollend. Critique of Current Theories of Akhieser Damping in Solids. Physical Review B.1970; 1(6): 2538-2544.

Varshney R.K., Shanker J. Temperature Dependences of Third‐Order Elastic Constants of CsCl, CsBr, and CsI Crystals. Basic Solid State Physics.1984;126(1): 77-82.

Brugger K. Thermodynamic Definition of Higher Order Elastic Coefficients. Physical Review A. 1964; 133(6A):1611-1612.

Mori S. and Hiki Y. Calculation of the Third-and Fourth-Order Elastic Constants of Alkali Halide Crystals. J. Phys. Soc. Japan. 1978; 45(5):1449-1456.

Upadhyay A.K. and Sharma B.S. Analysis of sound velocity and elastic moduli of some minerals. Indian J. Pure & Appl. Phys.2011; 49: 30-34.


Refbacks

  • There are currently no refbacks.