Open Access Open Access  Restricted Access Subscription or Fee Access

Aeroderivative Turbojet Engines Emulation Unit with Preparation and HFAC Emulator Development

Rayan Khan Ahmed

Abstract


This study indicates the construction of a twin-shaft engine-emulator system for simulation testing of the HFAC turbine. Two major machine designs have been characterized the turbine generator and the turbine emulation device. The engine-generator arrangement framework includes of a torsional stiffness turbojet engine that controls an HFAC steam turbine. The engine emulation system model uses the synchronous motor drive instead of the engine to drive the HFAC generator. The synchronous machine drive tracks the response speed of the aero-derived turbine used in the engine-generator model. The simulation results demonstrate the frequency of the turbine approximation unit.


Full Text:

PDF

References


Greeley JP. Theoretical heterogeneous catalysis: scaling relationships and computational catalyst design. Annu Rev Chem Biomol Eng. 2016;7:605–35. doi: 10.1146/annurev-chembioeng-080615–034413, PMID 27088666.

Ben-David S, Blitzer J, Crammer K, Kulesza A, Pereira F, Vaughan JW. A theory of learning from different domains. Mach Learn. May 2010;79(1–2):151–75. doi: 10.1007/s10994–009–5152–4.

Behler J. Atom-centered symmetry functions for constructing high-dimensional neural network potentials. J Chem Phys. 2011;134(7):074106. doi: 10.1063/1.3553717, PMID 21341827.

Morawietz T, Behler J. A density-functional theory-based neural network potential for water clusters including van der Waals corrections. J Phys Chem A. 2013;117(32):7356–66. doi: 10.1021/jp401225b, pMID 23557541.

Behler J. Perspective: machine learning potentials for atomistic simulations. J Chem Phys. 2016;145(17):170901. doi: 10.1063/1.4966192, PMID 27825224.

Ulissi ZW, Tang MT, Xiao J, Liu X, Torelli DA, Karamad M, Cummins K, Hahn C, Lewis NS, Jaramillo TF, Chan K, JK. NÃÿrskov. Machine-learning methods enable exhaustive searches for active bimetallic facets and reveal active site motifs for CO2 reduction. ACS Catal. 2017;7(10):6600–8.

Rogers D, Hahn M. Extended-connectivity fingerprints. J Chem Inf Model. 2010;50(5):742–54. doi: 10.1021/ci100050t, pMID 20426451.

Lo YC, Rensi SE, Torng W, Altman RB. Machine learning in chemoinformatics and drug discovery. Drug Discov Today. 2018;23(8):1538–46, 08. doi: 10.1016/j.drudis.2018.05.010, PMID 29750902.

Sanchez-Lengeling B, Aspuru-Guzik A. Inverse molecular design using machine learning: generative models for matter engineering. Science. 2018;361(6400):360–5. doi: 10.1126/science.aat2663, PMID 30049875. 33]. Rasmussen CE. Gaussian processes in machine learning. Lecture Notes in Computer Science. 2004:63–71. doi: 10.1007/978–3–540–28650–9_4.

Hofmann T, Schölkopf B, Smola AJ. Kernel methods in machine learning. Ann Statist. 2008;36(3):1171–220. doi: 10.1214/009053607000000677.

Kohavi R. A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Proceedings of the 14th international joint conference on Artificial Intelligence-Volume 2, ser. San Francisco: IJCAI. Morgan Kaufmann Publishers, Inc; 1995. p. 1137–43.

Rupp M. Machine learning for quantum mechanics in a nutshell. Int J Quantum Chem. 2015;115(16):1058–73. doi: 10.1002/qua.24954.

Glorot X, Bengio Y. Understanding the difficulty of training deep feedforward neural networks in Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, ser. Proceedings of Machine Learning Research. Chia Laguna resort Teh YW, Titterington M, editors. Vol. 9. Sardinia, Italy: PMLR; May 13–15 2010. p. 249–56.

Zou H, Hastie T. Regularization and variable selection via the elastic net. J R Stat Soc B. 2005;67(2):301–20. doi: 10.1111/j.1467–9868.2005.00503.x.

Bo C, Maseras F, López N. The role of computational results databases in accelerating the discovery of catalysts. Nat Cat. 2018;1(11):809–10. doi: 10.1038/s41929–018–0176–4.

Jolliffe IT, Cadima J. Principal component analysis: a review and recent developments. Philos Trans R Soc Lond A. Apr 2016;374(2065):20150202. doi: 10.1098/rsta.2015.0202, PMID 26953178.

Melkumova LE, Shatskikh SY. Comparing ridge and lasso estimators for data analysis. Procedia Eng. 2017;201:746–55. doi: 10.1016/j.proeng.2017.09.615.

Housecroft CE, Sharpe AG. Inorganic chemistry. Inorg Chem. 2008:31, 1013, 1014.

Ramakrishnan R, von Lilienfeld OA. Machine learning, quantum chemistry, and chemical space. Reviews in Computational Chemistry. 2017:225–56. doi: 10.1002/9781119356059.ch5.

Verleysen M, François D. The curse of dimensionality in data mining and time series prediction. Lecture Notes in Computer Science. 2005:758–70. doi: 10.1007/11494669_93.

Rupp M, Tkatchenko A, Müller KR, von Lilienfeld OA. Fast and accurate modeling of molecular atomization energies with machine learning. Phys Rev Lett. Jan 2012;108(5):058301. doi: 10.1103/PhysRevLett.108.058301, PMID 22400967.

Hansen K, Biegler F, Ramakrishnan R, Pronobis W, von Lilienfeld OA, Müller KR, Tkatchenko A. Machine learning predictions of molecular properties: accurate many-body potentials and nonlocality in chemical space. J Phys Chem Lett. 2015;6(12):2326–31. doi: 10.1021/acs.jpclett.5b00831, PMID 26113956.

Seeger M. Gaussian processes for machine learning. Int J Neural Syst. 2004;14(2):69–106. doi: 10.1142/S0129065704001899, PMID 15112367.

Walker EA, Mitchell D, Terejanu GA, Heyden A. Identifying active sites of the water-gas shift reaction over titania supported platinum catalysts under uncertainty. ACS Catal. 2018;8(5):3990–8. doi: 10.1021/acscatal.7b03531.

Walker E, Ammal SC, Terejanu GA, Heyden A. Uncertainty quantification framework applied to the water-gas shift reaction over Pt-based catalysts. J Phys Chem C. 2016;120(19):10328–39 339. doi: 10.1021/acs.jpcc.6b01348, P. 10.

Lu J, Behtash S, Heyden A. Theoretical investigation of the reaction mechanism of the decarboxylation and decarbonylation of propanoic acid on pd(111) model surfaces. J Phys Chem C. 2012;116(27):14328–41 341. doi: 10.1021/jp301926t, P. 14.

Lu J, Faheem M, Behtash S, Heyden A. Theoretical investigation of the decarboxylation and decarbonylation mechanism of propanoic acid over a ru(0001) model surface. J Cat. 2015;324:14–24. doi: 10.1016/j.jcat.2015.01.005.

Meredig B, Wolverton C. Dissolving the periodic table in cubic zirconia: data mining to discover chemical trends. Chem Mater. 2014;26(6):1985–91. doi: 10.1021/cm403727z.

Ghiringhelli LM, Vybiral J, Levchenko SV, Draxl C, Scheffler M. Big data of materials science: critical role of the descriptor. Phys Rev Lett. Mar 2015;114(10):105503. doi: 10.1103/PhysRevLett.114.105503, PMID 25815947.

Lopez-Paz D, Sra S, Smola AJ, Ghahramani Z, Schölkopf B. Randomized nonlinear component analysis. In: Proceedings of the 31st international conference on Machine Learning. JMLR.org. Vol. 32, ser. ICML’14; 2014. p. II–1359–67.


Refbacks

  • There are currently no refbacks.