Open Access Open Access  Restricted Access Subscription or Fee Access

A Study of Pyrene Adsorption Behavior onto Oraganoclays in Aqueous Solution

Kelechi E. Onwuka, Jude C. Igwe, Nnamdi E. Enenwa, Chris U. Aghalibe

Abstract


ABSTRACT

This study investigates pyrene adsorption behavior onto Bentonite (Bt) and organo-bentonite (Bt-HDTMA and Bt-TMPA) at 100% CEC. The adsorbents were characterized by SEM, XRD and FTIR spectroscopy, and sorption parameters such as contact time, initial pyrene concentration, pH and temperature were used to examine the sorption process. Equilibrium was attained after 120 minutes of contact time and the sorption of pyrene by the adsorbents follow the order: Bt<Bt-TMPA<Bt-HDTMA. Results from characterization showed that organic modification of bentonite clay resulted to structural changes on the clay surfaces. The experimental data were subjected to three kinetic models and the Langmuir and Freundlich isotherms were also applied to the data. However, the result also showed that the experimental data were best fitted to Pseudo second order Kinetic model and the Freundlich isotherms model, owing to their highest R2 values and other considered factors. Thermodynamic studies also confirmed the adsorption process of pyrene by the organoclays to be exothermic, physical, feasible and spontaneous process.

Keywords: Pyrene, Organoclays, Isotherms, Adsorption, Thermodynamics


Full Text:

PDF

References


Lamichhane, S., Bal Krishna, K.C., Sarukkalige, R., 2016. Polycyclic aromatic hydrocarbons (PAHs) removal by sorption: A review. Chemosphere 148, 336e353, https://doi.org/10.1016/j.chemosphere.2016.01.036.

Johnsen, A.R., Karlson, U., 2005. PAH degradation capacity of soil microbial communities- does it depend on PAH exposure? Microb. Ecol. 50, 488e495, https://doi: 10.1007/s00248-005-0022-5.

Gan, M., Sun, S., Zheng, Z., et al., 2015. Adsorption of Cr (VI) and Cu (II) by AlPO4 modified biosynthetic schwertmannite. Appl.Surf. Sci. 356, 986e997, https://doi.org/10.1016/j.apsusc.2015.08.200.

Liu, W., Cai, Z., Zhao, X., et al., 2016a. A high-capacity and photo-regenerable composite material for efficient adsorption and degradation of phenanthrene in water. Environ. Sci. Technol. 50 (20), https://doi.org/10.1021/acs.est.6b02623.

Zhang, Z.L., Hong, H.S., Zhou, J.L., Yu, G., 2004. Phase association of polycyclic aromatic hydrocarbons in the Minjiang river Estuary, China. Sci. Total Environ. 323, 71e86. https://doi.org/10.1016/j.scitotenv.2003.09.026.

Bortone I, Labianca C, Todaro F, De Gisi S, Coulon F, Notarnicola M, 2020. Experimental investigations and numerical modelling of in-situ reactive caps for PAH contaminated marine sediments, Journal of Hazardous Materials, 5, 387:121724,

https://doi.org/10.1016/j.jhazmat.2019.121724

Moore, F., Akhbarizadeh, R., Keshavarzi, B., Khabazi, S., Lahijanzadeh, A. & Kermani, M. 2015. Ecotoxicological risk of polycyclic aromatic hydrocarbons (PAHs) in urban soil of Isfahan metropolis, Iran. Environmental Monitoring and Assessment, 187(4), 207, https://doi: 10.1007/s10661-015-4433-6.

Ligaray, M., Baek, S.S., Kwon, H.O., et al., 2016. Watershed-scale modeling on the fate and transport of polycyclic aromatic hydrocarbons (PAHs). J. Hazard Mater. 320, 442e457, https://doi:10.1016/j.jhazmat.2016.08.063.

Meng, X., Zhang, C., Zhuang, J., Zheng, G., Zhou, L., 2020. Assessment of schwertmannite, jarosite and goethite as adsorbents for efficient adsorption of phenanthrene in water and the regeneration of spent adsorbents by heterogeneous fenton-like reaction. Chemosphere , 244, 125523, https://doi.org/10.1016/j.chemosphere.2019.125523.

Lawal I.A., Moodleya B., 2016. Column, kinetic and isotherm studies of PAH (phenanthrene) and dye (acid red) on kaolin modified with 1-hexyl, 3-decahexyl imidazolium ionic liquid, Journal of Environmental Chemical Engineering. 4(3), 2774-2784,

http://dx.doi.org/10.1016/j.jece.2016.05.010.

Eckenfelder, W.W., 2000. Industrial Water Pollution Control, third ed. McGraw-Hill, New York.

Onwuka, K.E., Igwe, J.C., Aghalibe, C.U., Obike A.I., 2020. Hexadecyltrimethyl Ammonium (HDTMA) and Trimethylphenyl Ammonium (TMPA) Cations intercalation of Nigerian Bentonite Clay for Multi-component Adsorption of Benzene, Toluene, Ethylbenzene and Xylene (BTEX) From Aqueous Solution: Equilibrium and Kinetic Studies. Journal of Analytical Techniques and Research, 2, 70-95, https:// doi: 10.26502/jatri.013.

Alther, G., 2002. Using organoclays to enhance carbon filtration.Waste Management 22, 507–513, https://doi.org/10.1016/S0956-053X(01)00045-9.

Nourmoradi, H., Nikaeen M., and Khiadani, M., 2012. Multi-Component Adsorption of Benzene, Toluene, Ethylbenzene, and xylene from Aqueous solutions by Montmorillonite Modified with Tetradecyl Trimethyl Ammonium Bromide. journal of chemistry, 2013: 1-10, https://doi.org/10.1155/2013/589354.

Boyd, S. A., Shaobai, S., Lee, J. F., and Mortland, M. M., 1988. Pentachlorophenol sorption by organo-clays: Clays & Clay Minerals 36, 125–130.

Ma, J., Zhu, L., 2006. Simultaneous sorption of phosphate and phenanthrene to inorgano-organo-bentonite from water. J. Hazard. Mater. 136, 982e988, https://doi: 10.1016/j.jhazmat.2006.01.046.

Cobas, M., Ferreira, L., Sanrom_an, M.A., Pazos, M., 2014. Assessment of sepiolite as a low-cost adsorbent for phenanthrene and pyrene removal: kinetic and equilibrium studies. Ecol. Eng. 70, 287e294, https://doi:10.1016/j.ecoleng.2014.06.014.

Justyna, S., Zuzanna, S., Paweł, C., Agnieszka, P., 2015. The effect of organic and clay fraction on polycyclic aromatic hydrocarbons mobility in soil model systems. J. Res. Appl. Agric. Eng. 60.

Ake, C.L., Wiles, M.C., Huebner, H.J., McDonald, T.J., Cosgriff, D., Richardson, M.B., Donnelly, K.C., Phillips, T.D., 2003. Porous organoclay composite for the sorption of polycyclic aromatic hydrocarbons and pentachlorophenol from groundwater. Chemosphere 51, 835e844, https://doi: 10.1016/S0045-6535(03)00040-7.

Changchaivong, S., Khaodhiar S., 2009. Adsorption of naphthalene and phenanthrene on dodecylpyridinium-modified bentonite. Applied Clay Science 43, 317–321, https://doi:10.1016/j.clay.2008.09.012.

Trivedi H.C., Patel V.M., and . Patel R.D., 1973. Adsorption of cellulose triacetate on calcium silicate,” European Polymer Journal, 9(6), 525–531, https://doi.org/10.1016/0014-3057(73)90036-0.

Dixon, K. L. & Knox, A. S., 2012. Sequestration of Metals in Active Cap Materials: A Laboratory and Numerical Evaluation. Remediation, 22(2), 81-91, https://doi: 10.1002/rem.21312.

Kibbey, T.C.G., Hayes, K.F., 1993. Partitioning and UV adsorption studies of phenanthrene on cationic surfactant-coated silica. Environmental Science & Technology 27 (10), 2168–2173, https://doi.org/10.1021/es00047a025.

Park .Y., Sun .Z., Ayoko G.A., Frost R.L., 2014. Removal of herbicides from aqueous solutions by modified forms of montmorillonite, J. Colloid Interface Sci. 415: 127–132, https://doi:10.1016/j.jcis.2013.10.024.

Cruz-Guzman M, Celis R., Hermosin M.C., Cornejo .J., 2004. Adsorption of the herbicide simazine by montmorillonite modified with natural organic cations, Environ. Sci. Technol. 38: 180–186, https://doi: 10.1021/es030057w.

Yang, S., Gao M., Luo,Z., Yang Q., 2015. The characterization of organo-montmorillonite modified with a novel aromatic-containing gemini surfactant and its comparative adsorption for 2-naphthol and phenol. Chemical Engineering Journal 268, 125–134, http://dx.doi.org/10.1016/j.cej.2015.01.060.

Park .Y., Ayoko G.A., Horvath .E., Kurdi .R., Kristof .J., Frost R.L., 2013. Structural characterisation and environmental application of organoclays for the removal of phenolic compounds, J. Colloid Interface Sci. 393: 319–334, https://doi.org/10.1016/j.jcis.2012.10.067.

Mader, B.T., Uwe-Goss, K., Eisenreich, S.J., 1997. Sorption of nonionic, hydrophobic organic chemicals to mineral surfaces. Environ. Sci. Technol. 31, 1079e1086, https://doi.org/10.1021/ES960606G.

Raber, B., Kogel-Knabner, I., Stein, C., Klem, D., 1998. Partitioning of polycyclic aromatic hydrocarbons to dissolved organic matter from different soils. Chemosphere 36, 79e97, https://doi.org/10.1111/j.1365-2389.1995.tb01827.x

Zeledon-Toruno, Z.C., Lao-Luque, C., de Las Heras, F.X., Sole-Sardans, M., 2007. Removal of PAHs from water using an immature coal (leonardite). Chemosphere 67, 505e512, https://doi: 10.1016/j.chemosphere.2006.09.047.

Niu, J., Dai, Y., Guo, H., Xu, J., Shen, Z., 2013. Adsorption and transformation of PAHs from water by a laccase-loading spider-type reactor. J. Hazard. Mater. 248e249, https://doi: 10.1016/j.jhazmat.2013.01.017.

Awoyemi, A., 2011. Understanding the Adsorption of PAHs from Aqueous Phase on to Activated Carbon. Thesis. 254e260.

Gupta, H., 2015. Removal of phenanthrene from water using activated carbon developed from orange rind. Int. J. Sci. Res. Environ. Sci. 3, 248e255, https://doi:10.12983/ijsres-2015-p0248-0255.

Koyunch, H., Kul, A.R., 2010. Adsorption of Pb(II) ions from aqueous solution by native and activated bentonite: kinetic, equilibrium and thermodynamic study, J. Hazard. Mater. 179, 332–339, https://doi: 10.1016/j.jhazmat.2010.03.009.


Refbacks

  • There are currently no refbacks.