Open Access Open Access  Restricted Access Subscription or Fee Access

Biological Recovery of Soil Impacted by 30,000 ppm of Gasoline

Juan Manuel Sánchez Yáñez, Juan Luis Ignacio-De la Cruz, Gabriela Morales Jil, Izaney Rodríguez Díaz, Mohamed Ali Borgi

Abstract


Gasoline is a mixture of low and high molecular weight hydrocarbons, which spilled on the soil due to fuel theft, causes environmental pollution. In consequence the Mexican standard, called NOM-138- SEMARNAT/SSA1-2012, establishes a maximum allowed limit of 4,400 ppm gasoline in soil. Therefore, the objectives of this research were i) biological recovery of the soil impacted by 30,000 ppm of gasoline, by biostimulation with commercial detergent 123® plus a mineral solution ii) phytoremediation with Phaseolus vulgaris plus, Methylobacterium symbioticum and Xanthobacter autotrophicus, to decrease the concentration of gasoline to a value lower, than the maximum value of the NOM-138-SEMARNAT/SSA1-2012. Based in response variables after biostimulation: as well as: measurement of total hydrocarbons for the decrease in gasoline concentration. While during phytoremediation for the remaining gasoline: in P. vulgaris seeds, the days of emergence and germination percentage; in phenology and biomass in seedling stage, the final concentration of gasoline. The experimental data were analyzed by ANOVA/Tukey p<0.05%. The results indicated that in 35 days the biostimulation of the soil impacted by gasoline with 123® detergent and 50% mineral solution decreased it to 20,000 ppm. While 15 days after gemination the phytoremediation by P. vulgaris with M. symbioticum and X. autotrophicus seedling, healthy growth of the legume was observed, that improved 35 days after sowing to seedling stage; when P. vulgaris with M. symbioticum and X. autotrophicus grew healthy, that coincided with the decrease, in the gasoline concentration at 1000 ppm, lower than the maximum of NOM-138-SEMARNAT/SSA1-2012. This supports that the integration of biostimulation and phytoremediation, is an effective option for relatively, low concentrations of 30,000 ppm. In the reuse of this soil, with not risk to human and/or animal health.


Full Text:

PDF

References


Adipah, S. 2019. Introduction of petroleum hydrocarbons contaminants and its human effects.

Journal of Environmental Science and Public Health, 3(1), 1–9.

Jabbarov, Z., Abdrakhmanov, T., Pulatov, A., Kováčik, P., & Pirmatov, K. 2019. Change in the

Parameters of Soils Contaminated by Oil and Oil Products. Agriculture/Pol'nohospodárstvo, 65(3).

Lima, S. D., Oliveira, A. F., Golin, R., Lopes, V. C. P., Caixeta, D. S., Lima, Z. M., & Morais, E.

B. 2019. Isolation and characterization of hydrocarbon-degrading bacteria from gas station leakingcontaminated groundwater in the Southern Amazon, Brazil. Brazilian Journal of Biology, 80, 354–

Norma Oficial Mexicana NOM-138-SEMARNAT/SSA1-2012, Límites máximos permisibles de

hidrocarburos en suelos y lineamientos para el muestreo en la caracterización y especificaciones

para la remediación. DOF secretaria de Gobernación [en línea]. 2013. Disponible en:

http://www.dof.gob.mx/nota_de-talle.php?codigo=5313544&fecha=10/09/20135.

Daryabeigi Zand, A., & Hoveidi, H. 2018. Evaluation of the Potential of Burningbush (Kochia

scoparia (L.) Schard) and Maize (Zea mays L.) and the Role of Soil Organic Amendment in

Phytoremediation of Gasoline-Contaminated Soils. International Journal of Environmental

Research, 12, 327–336.

Ali, N., Dashti, N., Khanafer, M., Al–Awadhi, H., & Radwan, S. 2020. Bioremediation of soils

saturated with spilled crude oil. Scientific reports, 10(1), 1116.

Ahmad, A. A., Muhammad, I., Shah, T., Kalwar, Q., Zhang, J., Liang, Z., ... & Rui–Jun, L. 2020.

Remediation methods of crude oil contaminated soil. World Journal of Agriculture and Soil

Science, 4(3), 8.

Nardi, P., Ulderico, N. E. R. I., Di Matteo, G., Trinchera, A., Napoli, R., Farina, R., ... & Benedetti,

A. (2018). Nitrogen release from slow–release fertilizers in soils with different microbial activities.

Pedosphere, 28(2), 332–340.

Green, P. N. 2015. Methylobacterium. In Bergey’s Manual of Systematics of Archaea and Bacteria

(pp. 1–8). Wiley.

Hartung, J.S. 2006. Rapid, specific and quantitative assays for the detection of the endophytic

bacterium Methylobacterium mesophilicum in plants. Journal of Microbiological Methods, 65(3),

-541.

Castro-Mancilla, Y. V., de la Rosa-Manzano, E., Castro-Nava, S., & Martínez-Avalos, J. G. 2019.

Physiological responses of Quercus oleoides Schltdl & Cham) to soils contaminated by diesel.

Plant Production Science, 22(4), 519–529.

Curiel-Alegre, S., Velasco-Arroyo, B., Rumbo, C., Khan, A. H. A., Tamayo-Ramos, J. A., Rad, C.,

... & Barros, R. (2022). Evaluation of biostimulation, bioaugmentation, and organic amendments

application on the bioremediation of recalcitrant hydrocarbons of soil. Chemosphere, 307, 135638.

Singh, P., Kadam, V., & Patil, Y. (2022). Isolation and development of a microbial consortium for

the treatment of automobile service station wastewater. Journal of Applied Microbiology, 132(2),

–1061.

Ambaye, T. G., Chebbi, A., Formicola, F., Prasad, S., Gomez, F. H., Franzetti, A., & Vaccari, M.

Remediation of soil polluted with petroleum hydrocarbons and its reuse for agriculture:

Recent progress, challenges, and perspectives. Chemosphere, 293, 133572.

Sutthicharoen, S., Wibuloutai, J., Prathumchai, N., & Suttichareon, S. 2023. Removal of Total

Petroleum Hydrocarbons from Contaminated Soil with Used Lubricating Oil by Surfactant: Triton

X-100, and Cow Manure Amendments. Burapha Science Journal, 1144–1160.

Lee, S. H., Ji, W., Kang, D. M., & Kim, M. S. 2018. Effect of soil water content on heavy mineral

oil biodegradation in soil. Journal of soils and sediments, 18, 983–991.

Meištininkas, R., Vaškevičienė, I., Dikšaitytė, A., Pedišius, N., & Žaltauskaitė, J. 2023. Potential

of Eight Species of Legumes for Heavy Fuel Oil–Contaminated Soil Phytoremediation.

Sustainability, 15(5), 4281.

Ruikar, A., & Pawar, H. S. 2022. Diversity and Interaction of Microbes in Biodegradation.

Microbial Community Studies in Industrial Wastewater Treatment, 185–213.

Chan-Quijano, J. G., Cach-Pérez, M. J., & Rodríguez-Robles, U. 2020. Phytoremediation of soils

contaminated by hydrocarbon. Phytoremediation: In-situ Applications, 83–101.

Kochhar, N., Shrivastava, S., Ghosh, A., Rawat, V. S., Sodhi, K. K., & Kumar, M. 2022.

Perspectives on the microorganism of extreme environments and their applications. Current

research in microbial sciences, 3, 100134.

Grifoni, M., Rosellini, I., Angelini, P., Petruzzelli, G., & Pezzarossa, B. 2020. The effect of residual

hydrocarbons in soil following oil spillages on the growth of Zea mays plants. Environmental

Pollution, 265, 114950.

Kafle, A., Timilsina, A., Gautam, A., Adhikari, K., Bhattarai, A., & Aryal, N. 2022.

Phytoremediation: Mechanisms, plant selection and enhancement by natural and synthetic agents.

Environmental Advances, 8, 100203.




DOI: https://doi.org/10.37628/ijec.v10i1.1441

Refbacks

  • There are currently no refbacks.