Open Access Open Access  Restricted Access Subscription or Fee Access

Isolation of Microbes from Valley of Flower (VOF) India and Screening of Actinomycetes for their Antibiotic Potential

Nirmal Shankar Sahay, Vaishali Raval

Abstract


Microbial diversity depends on various factors. The habitat, niche and climatic conditions play a crucial role in species richness and uniqueness. In the search for new antimicrobial compound valley of flower (VOF) would be a hot spot because of its geographical location. It is one of the eighth world’s heritages and has no such reported studies. We have analysed 62 soil samples from different locations ranging the latitude 30°41′–30°48′ N and longitude 79°33′–79°46′ E to latitude 30°68′–30°8′ N and longitude 79°55′–79°76′ E. A total of 334 types of microbial communities with 54% actinomycetes, 24% fungi and 22% bacteria were observed. 17% of the isolated Actinomycetes were having antimicrobial property against one or more than one kind of pathogens tested. Out of 22 identified, 4 (Streptomyces diastaticus subsp. ardesiacus NRRL B-1773(T), Streptomyces badius, Stenotrophomonas pavanii, and Nocardiopsis dassonvillei subsp. dassonvillei DSM 43111(T)) are novel not known to produce antibiotics. The discovery of new antibiotics is even more urgent and desired in the current COVID-19 pandemic. There is high potential of VOF niche for a novel antibiotic.


Keywords


Actinomycetes, Antimicrobial, Diversity, Valley of Flower, Pathogens

Full Text:

PDF

References


Sujatha P, Bapiraju Kurada VVNB, Terli R. 2005. Studies on antagonistic marine actinomycetes from the Bay of Bengal. World J. Microbiol. Biotechnol. 21, 583-585.

Balagurunathan R and Radhakrishnan M. 2007. Actinomycetes: Diversity and their importance. In: Microbiology – Applications and Current Trends. P.C. Trivedi (editor), Pointer publishers, Jaipur, India, 2007, 297-329.

Tang S.L., Nuttall S., Ngui K., Fisher C., Lopez P., Dyall-Smith M. 2002. HF2: a double-stranded DNA tailed haloarchaeal virus with a mosaic genome. Mol Microbiol. 44(1):283- 296.

Chaudhary H.S., Bhavana S., Shrivastava A.R., Shrivastava S. 2013. Diversity and versatility of actinomycetes and its role in antibiotic production. Journal of Applied Pharmaceutical Science. 3(8 Suppl 1):S83-S94.

Brown E D and Wright G D (2016) Antibacterial drug discovery in the resistance era. Nature 529, 336-343.

P.E.W. Trusts (2019). Five-year analysis shows continued deficiencies in antibiotic development. https://www.pewtrusts.org/en/research-and-analysis/data-visualizations/2019/five-year-analysis-shows-continued-deficiencies-in-antibiotic-development.

O’Neill, J. (2016). Antimicrobial Resistance: Tackling a crisis for the Health and Wealth of Nations. Rev Antimicrob Res, 2016.

Conly Jm. and Johnston Bl. 2005. "Where are all the new antibiotics? The new antibiotic paradox". Canadian Journal of Infectious Diseases and Medical Microbiology. 16 (3): 159–160.

World Health Organization 2017. Antibacterial agents in clinical development: an analysis of the antibacterial clinical development pipeline, including tuberculosis. Geneva: (WHO/EMP/IAU/2017.12).

Boucher H.W., Talbot G. H., Benjamin D.K., Bradley J., Guidos R.J., Jones R.N., Murray B.E., Bonomo R.A., Gilbert D. 2013. "10 x '20 Progress--development of new drugs active against gram-negative bacilli: an update from the Infectious Diseases Society of America". Clinical Infectious Diseases. 56 (12): 1685–94.

Steenhuysen, Julie 2013. Drug pipeline for worst superbugs 'on life support': report. Reuters.

Singh D. and V.P. Agrawal 2002. Microbial Biodiversity of Mount Sagarmatha Region. In Proceedings of International Seminar on Mountains, March 6 - 8, Kathmandu. Nepal Academy of Science and Technology, Khumaltar, Lalitpur, Nepal pp. 357-360.

Magarvey N.A., J.M. Keller, V. Bernan, M. Dworkin and D.H. Sherman 2004. Isolation and characterization of novel marine-derived Actinomycetes taxa rich in bioactive metabolites. Applied and Environmental Microbiology 70(12): 7520-7529.

P. Ganesan, R. H. A. David, A. D. Reegan, 2017. Isolation and molecular characterization of actinomycetes with antimicrobial and mosquito larvicidal properties. Beni-Seuf University Juournal of Basic and Applied Sciences, vol. 6, no. 2, pp. 209–217.

M. C. Rotich, E. Magir, C. Bii and N. Maina 2017. Bio-prospecting for broad spectrum antibiotic producing actinomycetes isolated from virgin soils in Kericho county, Kenya,” Advances in Microbiology, vol.7, no.1

Liu J., Bedell T.A., West J.G., Sorensen E.J. 2016. Design and Synthesis of Molecular Scaffolds with Anti-infective Activity. Tetrahedron. 72 (25): 3579–3592.

Shalini R.V., Amutha D.R.K. 2015. Isolation and characterization of antifungal actinomycete from Thiruporur forests. International Journal of Pharma and Bio Sciences., 6(1):(B)750- 758.

Chaabane C.F., Bouras N., Mokrane S., Bouznada K., Zitouni A., Potter G., Spröer C., Klenk H., Sabaou N. 2017. Planomonospora algeriensis sp. nov., an actinobacterium isolated from a Saharan soil of Algeria. Anton. Leeuw. 110, 245–252.

Bouznada K., Bouras N., Mokrane S., Chaouch F.C., Zitouni A., Pötter G., Spröer C., Klenk H.P., Sabaou N. 2017. Saccharothrix ghardaiensis sp. nov., an actinobacterium isolated from Saharan soil. Anton. Leeuw. 110, 399–405.

Boubetra D., Zitouni A., Bouras N., Schumann P., Spröer C., Klenk H.P., Sabaou N. 2015. Saccharothrix tamanrassetensis sp. nov., an actinomycete isolated from Saharan soil. Int. J. Syst. Evol. Microbiol. 65, 1316–1320.

Boudjella H., Zitouni A., Coppel C., Mathieu F., Monje M.C., Sabaou N., Lebrihi A. 2010. Antibiotic R2, a new angucyclinone compound from Streptosporangium sp. Sg3. J. Antibiot., 63, 709–711.

Tata, S., Aouiche A., Bijani C., Bouras N., Pont F., Mathieu F., Sabaou N. 2019. Mzabimycins A and B, novel intracellular angucycline antibiotics produced by Streptomyces sp. PAL114 in synthetic medium containing L-tryptophan. Saudi Pharm. J.

Shrestha B, Nath DK, Maharjan A, Poudel A, Pradhan RN, Aryal S. (2021). Isolation and Characterization of Potential Antibiotic-Producing Actinomycetes from Water and Soil Sediments of Different Regions of Nepal. Int J Microbiol. 2021:5586165. doi: 10.1155/2021/5586165. PMID: 33763135; PMCID: PMC7946463.

Kala, C. P. 1998. Ph D thesis, Forest Research Institute, Dehradun.

Kala, C. P. 2004. The Valley of Flowers: Myth and Reality, International Book Distributor, Dehradun.

Kala, C. P. 2005a. Int. J. Biodiversity Sci. Manage,1, 25-32.

Kala, C. P. 2005b. Conserve. Biol., 19, 368-378.

Vaishali Raval and Nirmal S. Sahay. 2018. Antimicrobial Potential of Streptomyces violascens ISP 5183 (T) Isolated from Valley of Flower (VOF) India. Int. J. Curr. Microbiol. App. Sci. 7(09): 2808-2812.

Omar Messaoudi, Joachim Wink and Mourad Bendahou 2020 Diversity of Actinobacteria Isolated from Date Palms Rhizosphere and Saline Environments: Isolation, Identification and Biological Activity Evaluation., Microorganisms 8, 1853.

Lucien, M., Canarie, M. F., Kilgore, P. E., Jean-Denis, G., Fénélon, N., Pierre, M., Cerpa, M., Joseph, G. A., Maki, G., Zervos, M. J., Dely, P., Boncy, J., Sati, H., Rio, A. D., & Ramon-Pardo, P. (2021). Antibiotics and antimicrobial resistance in the COVID-19 era: Perspective from resource-limited settings. International journal of infectious diseases: IJID: official publication of the International Society for Infectious Diseases, 104, 250–254.

Ouhdouch, Y., Barakate, M., Finance, C., 2001. Actinomycetes of Moroccan habitats: isolation 6 and screening for antifungal activities. Eur. J. Soil Biol. 37, 69–74.

Tortorano, A.M., E.Cabrini & M.A.Viviani (1979). Sensibilite in vitro des levures a cinq antifongiques. Comparaison de deux methodes: CMI en gelose et methode des disques. Bull.Soc. Franc.Mycol.Med., 8: 69-74.

P. Nannipieri, J. Ascher, M. T. Ceccherini, L. Landi, G. Pietamellara and G. Renella. 2003. Microbial diversity and soil functions. European Journal of Soil Science, 54, 655–670.

Tabacchioni S., Chiarini L., Bevivino A., Cantale C., Dalmastri C. 2000. Bias caused by using different isolation media for assessing the genetic diversity of a natural microbial population. Microb. Ecol. 40, 169– 176.

Trevors J.T., 1998. Bacterial biodiversity in soil with an emphasis on chemically contaminated soils. Water Air Soil Pollut. 101, 45– 67.

Dix N.J., Webster J., 1995. Fungal Ecology. Chapman & Hall, London.

Hill T. C. J., Walsh K. A., Harris J. A. and Moffett B. F. (2003) FEMS Microbiol. Ecol. 43, 1–11.

Noah Fierer and Robert B. Jackson 2006. The diversity and biogeography of soil bacterial communities. PANS vol. 103, No. 3, pp 626-631.

P. Garbeva, J.A. van Veen, and J.D. van Elsas. 2004. Microbial Diversity in Soil: Selection of Microbial Populations by Plant and Soil Type and Implications for Disease Suppressiveness. Annual Review of Phytopathology. Vol. 42: 243-270.

Pimm S.L. 1984. The complexity and stability of ecosystems. Nature 307: 321–326.

Loreau M., Naeem S. and Inchausti P. 2002. Biodiversity and ecosystem functioning: synthesis and perspectives. Oxford University Press, Oxford, UK.

Hooper D.U., Chapin F.S., Ewel J.J., Hector A., Inchausti P., Lavorel S., Lawton H., Lodge, D.M., Loreau, M., Naeem, S., Schmid, B., Setal H., Symstad A.J., Vandermeer J. and Wardle D.A. 2005. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecological Monographs 75: 3–35.

Kinzig A., Pacala S. and Tilman D. 2002. The functional consequences of biodiversity: empirical progress and theoretical extensions. Princeton University Press, NJ, US.

Belnap J. & Lange O.L. 2003. Biological soil crusts: structure, function and management. Springer, Berlin, DE.

Bardgett R.D., Bowman W.D., Kaufmann R. & Schmidt S.K. 2005. A temporal approach to linking above ground and belowground ecology. Trends in Ecology & Evolution 20: 634–641.

Bowker M.A., Soliveres S. & Maestre, F.T. 2010. Competition increases with abiotic stress and regulates the diversity of biological soil crusts. Journal of Ecology 98: 551–560.

David L., Duteurtre M., Kergomard A., Kergomard G., Scanzi E., Staron T. 1980. Production of cinerubins by a Streptomyces griseorubiginosus strain. J. Antibiot. (Tokyo);33(1):49-53.

Ezaki M., Iwami M., Yamashita M., Hashimoto S., Komori T., Umehara K., Mine Y., Kohsaka M., Aoki H., Imanaka H. 1985. Biphenomycins A and B, novel peptide antibiotics. I. Taxonomy, fermentation, isolation and characterization. J. Antibiot. (Tokyo); 38(11):1453-61.

Matsumoto N., Tsuchida T., Maruyama M., Kinoshita N., Homma Y., Iinuma H., Sawa T., Hamada M., Takeuchi T., Heida N., Yoshioka T.1999. Lactonamycin, a new antimicrobial antibiotic produced by Streptomyces rishiriensis MJ773-88K4. I. Taxonomy, fermentation, isolation, physico-chemical properties and biological activities. J. Antibiot. (Tokyo). 52(3):269-75.

R. H. Baltz and E. T. Seno. 1988. Genetics of Streptomyces fradiae and Tylosin Biosynthesis. Annual. Review of Microbiology.Vol. 42: 547-574.

Waksman S. A. and Lechevalier H. A. 1949. Neomycin, a New Antibiotic Active against Streptomycin-Resistant Bacteria, Including Tuberculosis organisms, Science 109:305-307.

Rohr J. 1989. Urdamycins, new angucycline antibiotics from Streptomyces fradiae. VI. Structure elucidation and biosynthetic investigations on urdamycin H. J. Antibiot. (Tokyo)., 42(10):1482-8.

Baril L., Boiron P., Manceron V., Ely S. O., Jamet P., Favre E., Caumes E., Bricaire F. 1991. Refractory craniofacial actinomycetoma due to Streptomyces somaliensis that required salvage therapy with amikacin and imipenem. Clin Infect Dis. ; 29(2):460-1.

Uyeda M, Yokomizo K, Miyamoto Y, Habib EE. 1998. Fattiviracin A1, a novel antiherpetic agent produced by Streptomyces microflavus Strain No. 2445. I. Taxonomy, fermentation, isolation, physico-chemical properties and structure elucidation. The Journal of Antibiotics 51(9):823-8.

Yamaguchi et al. 1957. Int. J. Syst. Bacteriol. 30:371 (AL) (Compendium of Actinobacteria from Dr. Joachim M. Wink, University of Braunschweig).

Orwah Saleh, Katrin Flinspach, Lucia Westrich, Andreas Kulik, Bertolt Gust, Hans-Peter Fiedler and Lutz Heide. 2012. Mutational analysis of a phenazine biosynthetic gene cluster in Streptomyces anulatus 9663. Beilstein J. Org. Chem., 8, 501–513.

Saleh O., Gust B., Boll B., Fiedler H.P., Heide L.2009. Aromatic prenylation in phenazine biosynthesis: dihydrophenazine-1-carboxylate dimethyl allyl transferase from Streptomyces anulatus. J Biol Chem. 22;284(21):14439-47.

Krastel P., Zeeck A., Gebhardt K., Fiedler H.P., Rheinheimer J. 2002. Endophenazines A-D, new phenazine antibiotics from the athropod associated endosymbiont Streptomyces anulatus II. Structure elucidation. J Antibiot (Tokyo). 55(9):801-6.

Lanoot B., Vancanneyt M., Dawyndt P., Cnockaert M., Zhang J., Huang Y., Liu Z., Swings J. 2004. BOX-pCR fingerprinting as a powerful tool to reveal synonymous names in the genus Streptomyces. Emended descriptions are proposed for the species Streptomyces cinereorectus, S. fradiae, S. tricolor, S. colombiensis, S. filamentosus, S. vinaceus and S. phaeopurpureus. Syst Appl Microbiol., 27(1):84-92.

Ogawara H.1993. Sequence of a gene encoding beta-lactamase from Streptomyces cellulosae. Gene. 14;124(1):111-4.

Ogawara H and Horikawa S.1979. Purification of beta-lactamase from Streptomyces cellulosae by affinity chromatography on Blue Sepharose. J Antibiot (Tokyo). 32(12):1328-35.

Rusanova E.P., Alekhov T.A., Fedorova G.B., Katrukha G.S. 2000. Development of a new method for preparing biologically active compounds based on the typed strain Streptomyces werraensis. Prikl Biokhim Mikrobiol., 36(3):312-6.


Refbacks

  • There are currently no refbacks.