Open Access Open Access  Restricted Access Subscription or Fee Access

CRISPR- Cas9: A revolutionary tool to eradicate HPV-mediated Cervical cancer.

Padmanav Koushik

Abstract


Human Papilloma Virus (HPV) is the main cause of cervical cancer in females. HPV is DNA virus that invades squamous epithelial cells and where E1 and E2 unwinds the circular DNA of the virus and E6 and E7 deceive the immune system, deactivates the apoptosis pathway, inactivates the P53 and pRB genes and proceeds viral replication and asymptomatic infections. CRISPR-Cas9 as an innovative technique can be used to edit, mutate or silence the E1 and E2 gene of the virus, thus restricting the helicase property of unwinding of the circular DNA and restricting the initiation of infections and probable carcinomas.


Keywords


Human papillomavirus; CRISPR/Cas9; Cervical cancer; Senescence; DNA virus; Oncogenes

Full Text:

PDF

References


Chung, C.H. and Gillison, M.L., 2009. Human papillomavirus in head and neck cancer: its role in pathogenesis and clinical implications. Clinical cancer research, 15(22), pp.6758-6762.

Clifford, G.M., Smith, J.S., Plummer, M., Munoz, N. and Franceschi, S., 2003. Human papillomavirus types in invasive cervical cancer worldwide: a meta-analysis. British journal of cancer, 88(1), pp.63-73.

Hazafa, A., Mumtaz, M., Farooq, M.F., Bilal, S., Chaudhry, S.N., Firdous, M., Naeem, H., Ullah, M.O., Yameen, M., Mukhtiar, M.S. and Zafar, F., 2020. CRISPR/Cas9: A powerful genome editing technique for the treatment of cancer cells with present challenges and future directions. Life sciences, p.118525.

Heidenreich, E., Novotny, R., Kneidinger, B., Holzmann, V. and Wintersberger, U., 2003. Non‐homologous end joining as an important mutagenic process in cell cycle‐arrested cells. The EMBO journal, 22(9), pp.2274-2283.

HuZ, Y., 2014. DisruptionofHPV16 E7byCRIsPR/CassysteminducesapoptosisandgrowthinhibitioninHPV16posi tivehumancervicalcancercells. BiomedResInt, 2014, p.612823.

Hwang, W.Y., Fu, Y., Reyon, D., Maeder, M.L., Tsai, S.Q., Sander, J.D., Peterson, R.T., Yeh, J.J. and Joung, J.K., 2013. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nature biotechnology, 31(3), pp.227-229.

Jonson, A.L., Rogers, L.M., Ramakrishnan, S. and Downs Jr, L.S., 2008. Gene silencing with siRNA targeting E6/E7 as a therapeutic intervention in a mouse model of cervical cancer. Gynecologic oncology, 111(2), pp.356-364.

Katic, I. and Großhans, H., 2013. Targeted heritable mutation and gene conversion by Cas9-CRISPR in Caenorhabditis elegans. Genetics, 195(3), pp.1173-1176.

Bhakta, M.S. and Segal, D.J., 2010. The generation of zinc finger proteins by modular assembly. In Engineered zinc finger proteins (pp. 3-30). Humana Press, Totowa, NJ.

Castanotto, D. and Rossi, J.J., 2009. The promises and pitfalls of RNA-interference-based therapeutics. Nature, 457(7228), pp.426-433.

Kim, H.J., Lee, H.J., Kim, H., Cho, S.W. and Kim, J.S., 2009. Targeted genome editing in human cells with zinc finger nucleases constructed via modular assembly. Genome research, 19(7), pp.1279-1288.

Dixon, E.P., Pahel, G.L., Rocque, W.J., Barnes, J.A., Lobe, D.C., Hanlon, M.H., Alexander, K.A., Chao, S.F., Lindley, K. and Phelps, W.C., 2000. The E1 helicase of human papillomavirus type 11 binds to the origin of replication with low sequence specificity. Virology, 270(2), pp.345-357.

Narisawa‐Saito, M. and Kiyono, T., 2007. Basic mechanisms of high‐risk human papillomavirus‐induced carcinogenesis: Roles of E6 and E7 proteins. Cancer science, 98(10), pp.1505-1511.

Kennedy, E.M., Kornepati, A.V., Goldstein, M., Bogerd, H.P., Poling, B.C., Whisnant, A.W., Kastan, M.B. and Cullen, B.R., 2014. Inactivation of the human papillomavirus E6 or E7 gene in cervical carcinoma cells by using a bacterial CRISPR/Cas RNA-guided endonuclease. Journal of virology, 88(20), pp.11965-11972.

Lee, C.J., Suh, E.J., Kang, H.T., Im, J.S., Um, S.J., Park, J.S. and Hwang, E.S., 2002. Induction of senescence-like state and suppression of telomerase activity through inhibition of HPV E6/E7 gene expression in cells immortalized by HPV16 DNA. Experimental cell research, 277(2), pp.173-182.

Mali, P., Yang, L., Esvelt, K.M., Aach, J., Guell, M., DiCarlo, J.E., Norville, J.E. and Church, G.M., 2013. RNA-guided human genome engineering via Cas9. Science, 339(6121), pp.823-826.

Münger, K., Baldwin, A., Edwards, K.M., Hayakawa, H., Nguyen, C.L., Owens, M., Grace, M. and Huh, K., 2004. Mechanisms of human papillomavirus-induced oncogenesis. Journal of virology, 78(21), pp.11451-11460.

Inturi, R. and Jemth, P., 2021. CRISPR/Cas9-based inactivation of human papillomavirus oncogenes E6 or E7 induces senescence in cervical cancer cells. Virology, 562, pp.92-102.

Sonnenberg, A., Calafat, J., Janssen, H., Daams, H., Van Der Raaij-Helmer, L.M., Falcioni, R., Kennel, S.J., Aplin, J.D., Baker, J. and Loizidou, M., 1991. Integrin alpha 6/beta 4 complex is located in hemidesmosomes, suggesting a major role in epidermal cell-basement membrane adhesion. The Journal of cell biology, 113(4), pp.907-917.

Luqman Jubair,1,2 Sora Fallaha,1,2 and Nigel A.J. McMillan, Systemic Delivery of CRISPR/Cas9 Targeting HPV Oncogenes Is Effective at Eliminating Established Tumor Talora C, Sgroi DC, Crum CP. Specific down-modulation of Notch1 signaling in cervical cancer cells is required for sustained HPV-E6/E7 expression and late steps of malignant transformation. Genes & Development. 2002;16(17):2252–2263.

Yoshiba, T., Saga, Y., Urabe, M., Uchibor, R., Matsubara, S., Fujiwara, H. and Mizukami, H., 2019. CRISPR/Cas9‑mediated cervical cancer treatment targeting human papillomavirus E6. Oncology letters, 17(2), pp.2197-2206.

Zur Hausen, H., 2002. Papillomaviruses and cancer: from basic studies to clinical application. Nature reviews cancer, 2(5), pp.342-350.




DOI: https://doi.org/10.37628/ijger.v7i1.674

Refbacks

  • There are currently no refbacks.