Open Access Open Access  Restricted Access Subscription or Fee Access

In Silico Studies of Luteolin as an Anti-inflammatory Agent: A Review

Kirti Chawla, Kush Chopra

Abstract


ABSTRACT

Luteolin; chemically known as 3, 4, 5,7-tetrahydroxyflavone is a common compound found in plants. Such plants have often been used to treat symptoms of inflammation. The aim of this paper is to analyze the in silico studies conducted over the last 12 years on the anti-inflammatory effects of luteolin.

 

Keywords: In silico, anti-inflammatory, luteolin, flavone, apple

Cite this Article: Kirti Chawla, Kush Chopra. In Silico Studies of Luteolin as an Anti-inflammatory Agent: A Review. International Journal of Computational Biology and Bioinformatics. 2020; 6(2):
18–22p.


Full Text:

PDF

References


Jeong D, Yi YS, Sung GH, Yang WS, Park JG, Yoon K, Yoon DH, Song C, Lee Y, Rhee MH, Kim TW, Kim JH, Cho JY. Anti-inflammatory activities and mechanisms of Artemisia asiatica ethanol extract. J Ethnopharmacol. 2014;152(3):487–96. doi: 10.1016/j.jep.2014.01.030, PMID 24503036.

Kim E, Yoon KD, Lee WS, Yang WS, Kim SH, Sung NY, Baek KS, Kim Y, Htwe KM, Kim YD, Hong S, Kim JH, Cho JY. Syk/Src-targeted anti-inflammatory activity of Codariocalyx motorius ethanolic extract. J Ethnopharmacol. 2014a;155(1):185–93. doi: 10.1016/j.jep.2014.05.013, PMID 24866386.

Kim HJ, Lee W, Yun JM. Luteolin inhibits hyperglycemia-induced proinflammatory cytokine production and its epigenetic mechanism in human monocytes. Phytother Res. 2014b;28(9):1383–91. doi: 10.1002/ptr.5141, PMID 24623679.

Li YC, Yeh CH, Yang ML, Kuan YH. Luteolin suppresses inflammatory mediator expression by blocking the Akt/NFkappaB pathway in acute lung injury induced by lipopolysaccharide in mice. Evid Based Complement Alternat Med. 2012;2012:383608. doi: 10.1155/2012/383608.

Pandurangan AK, Esa NM. Luteolin, a bioflavonoid inhibits colorectal cancer through modulation of multiple signaling pathways: a review. Asian Pac J Cancer Prev. 2014;15(14):5501–8. doi: 10.7314/apjcp.2014.15.14.5501, PMID 25081655.

Wall C, Lim R, Poljak M, Lappas M. Dietary flavonoids as therapeutics for preterm birth: luteolin and kaempferol suppress inflammation in human gestational tissues in vitro. Oxid Med Cell Longev. 2013;2013:485201. doi: 10.1155/2013/485201.

Yang WS, Kim D, Yi YS, Kim JH, Jeong HY, Hwang K, Kim JH, Park J, Cho JY. AKT-targeted anti-inflammatory activity of the methanol extract of Chrysanthemum indicum var. albescens. J Ethnopharmacol. 2017;201:82–90. doi: 10.1016/j.jep.2017.03.001, PMID 28274893.

Baek KS, Yi YS, Son YJ, Yoo S, Sung NY, Kim Y, Hong S, Aravinthan A, Kim JH, Cho JY. In vitro and in vivo anti-inflammatory activities of Korean Red ginseng-derived components. J Ginseng Res. 2016;40(4):437–44. doi: 10.1016/j.jgr.2016.08.003, PMID 27746698.

Baek KS, Yi YS, Son YJ, Jeong D, Sung NY, Aravinthan A, Kim JH, Cho JY. Comparison of anticancer activities of Korean red ginseng-derived fractions. J Ginseng Res. 2017;41(3):386–91. doi: 10.1016/j.jgr.2016.11.001, PMID 28701882.

Choi MR, Kwak SM, Bang SH, Jeong JE, Kim DJ. Chronic saponin treatment attenuates damage to the pancreas in chronic alcohol-treated diabetic rats. J Ginseng Res. 2017;41(4):503–12. doi: 10.1016/j.jgr.2016.09.002, PMID 29021697.

López-Lázaro M. Distribution and biological activities of the flavonoid luteolin. Mini Rev Med Chem. 2009;9(1):31–59. doi: 10.2174/138955709787001712, PMID 19149659.

Yu T, Yang Y, Kwak YS, Song GG, Kim MY, Rhee MH, Cho JY. Ginsenoside Rc from panax ginseng exerts anti-inflammatory activity by targeting TANK binding kinase 1/interferon regulatory factor-3 and p38/ATF-2. J Ginseng Res. 2017;41(2):127–33. doi: 10.1016/j.jgr.2016.02.001, PMID 28413316.

Farzaei MH, Abbasabadi Z, Ardekani MR, Rahimi R, Farzaei F. Parsley: a review of ethnopharmacology, phytochemistry and biological activities. J Tradit Chin Med. 2013;33(6):815–26. doi: 10.1016/s0254–6272(14)60018–2, PMID 24660617.

Ferrari FC, Ferreira LC, Souza MR, Grabe-Guimarães A, Paula CA, Rezende SA, Saúde-Guimarães DA. Anti-inflammatory sesquiterpene lactones from Lychnophora trichocarpha Spreng. (Brazilian Arnica). Phytother Res. 2013;27(3):384–9. doi: 10.1002/ptr.4736, PMID 22619042.

Ramezani M, Nasri S, Yassa N. Antinociceptive and anti-inflammatory effects of isolated fractions from Apium graveolens seeds in mice. Pharm Biol. 2009;47(8):740–3. doi: 10.1080/13880200902939283.

Zeng P, Zhang Y, Pan C, Jia Q, Guo F, Li Y, Zhu W, Chen K. Advances in studying of the pharmacological activities and structure–activity relationships of natural C glycosylflavonoids. Acta Pharmacol Sin B. 2013;3(3):154–62. doi: 10.1016/j.apsb.2013.04.004.

Gautam R, Jachak SM. Recent developments in anti-inflammatory natural products. Med Res Rev. 2009;29(5):767–820. doi: 10.1002/med.20156, PMID 19378317.

Ribeiro D, Freitas M, Tomé SM, Silva AMS, Laufer S, Lima JLFC, Fernandes E. Flavonoids inhibit COX-1 and COX-2 enzymes and cytokine/chemokine production in human whole blood. Inflammation. 2015;38(2):858–70. doi: 10.1007/s10753–014–9995-x, PMID 25139581.

Dash R, Uddin MMN, Hosen SMZ, Rahim ZB, Dinar AM, Kabir MSH, Sultan RA, Islam A, Hossain MK. Molecular docking analysis of known flavonoids as duel COX-2 inhibitors in the context of cancer. Bioinformation. 2015;11(12):543–9. doi: 10.6026/97320630011543, PMID 26770028.

Kutil Z, Temml V, Maghradze D, Pribylova M, Dvorakova M, Schuster D, Vanek T, Landa P. Impact of wines and wine constituents on cyclooxygenase-1, cyclooxygenase-2, and 5-lipoxygenase catalytic activity. Mediat Inflam. 2014;2014:8.

Zhu L, Chen J, Tan J, Liu X, Wang B. Flavonoids from Agrimonia pilosa Ledeb: free radical scavenging and DNA oxidative damage protection activities and analysis of bioactivity-structure relationship based on molecular and electronic structures. Molecules. 2017;22(3):E195. doi: 10.3390/molecules22030195, PMID 28245624.

Goettert M, Schattel V, Koch P, Merfort I, Laufer S. Biological evaluation and structural determinants of p38alpha mitogen-activated-protein kinase and c-Jun-Nterminal kinase 3 inhibition by flavonoids. ChemBioChem. 2010;11(18):2579–88. doi: 10.1002/cbic.201000487, PMID 21108268.

Hytti M, Piippo N, Korhonen E, Honkakoski P, Kaarniranta K, Kauppinen A. Fisetin and luteolin protect human retinal pigment epithelial cells from oxidative stress-induced cell death and regulate inflammation. Sci Rep. 2015;5:17645. doi: 10.1038/srep17645, PMID 26619957.

Hytti M, Szabó D, Piippo N, Korhonen E, Honkakoski P, Kaarniranta K, Petrovski G, Kauppinen A. Two dietary polyphenols, fisetin and luteolin, reduce inflammation but augment DNA damage-induced toxicity in human RPE cells. J Nutr Biochem. 2017;42:37–42. doi: 10.1016/j.jnutbio.2016.12.014, PMID 28113103.

Lee JO, Jeong D, Kim MY, Cho JY. ATP-binding pocket-targeted suppression of Src and Syk by luteolin contributes to its anti-inflammatory action. Mediat Inflam. 2015a;2015:967053. doi: 10.1155/2015/967053.

Lee YS, Kim MS, Lee DH, Kwon TH, Song HH, Oh SR, Yoon DY. Luteolin 8-C-beta-fucopyranoside downregulates IL-6 expression by inhibiting MAPKs and the NF-kappaB signaling pathway in human monocytic cells. Pharmacol Rep. 2015b;67(3):581–7. doi: 10.1016/j.pharep.2014.12.016, PMID 25933972.

Wright B, Watson KA, McGuffin LJ, Lovegrove JA, Gibbins JM. GRID and docking analyses reveal a molecular basis for flavonoid inhibition of Src family kinase activity. J Nutr Biochem. 2015;26(11):1156–65. doi: 10.1016/j.jnutbio.2015.05.004, PMID 26140983.

Lee JK, Kim SY, Kim YS, Lee WH, Hwang DH, Lee JY. Suppression of the TRIF-dependent signaling pathway of toll-like receptors by luteolin. Biochem Pharmacol. 2009;77(8):1391–400. doi: 10.1016/j.bcp.2009.01.009, PMID 19426678.


Refbacks

  • There are currently no refbacks.