Open Access Open Access  Restricted Access Subscription or Fee Access

Herbal Formulation of Medicines in the Treatment of Patients with Type-2 Diabetes Mellitus

Vitthalrao Bhimasha Khyade

Abstract


Human history is providing the witness on significant and well esteemed herbal source of medicine for the control of diseases including, diabetes. The herbal medicines are widely used presently indicating that, the herbs are a growing part of modern high-tech medicine. In recent times, there has been a revived interest within the plant remedies. The year: 2021 marks the centenary of discovery of insulin secretion through the cells of “Islets of Langerhans” by Frederick Grant Banting. He became the first individual for isolation of the insulin secretion by the cells of the islets of Langerhans of pancreas and tout insulin as a potential and the most significant treatment for diabetic patients. The plan of Frederick Grant Banting was to tie up the duct of the pancreatic gland in laboratory dog, Canis lupus familiaris (L) until the cells of enzyme production degenerated, leaving only the sturdy cells of islets of Langerhans alive. Frederick Grant Banting would then extract the residues. The rapidly increasing rate of diabetes mellitus is a serious concern to human health all over the world. The medicines extracted from the plants with antidiabetic property are more efficient than conventional medicines. Utilization of medicinal plants for treating and the prevention of diabetes like diseases deserve the longest history in comparison with the conventional medicines. The extractive preparations from plants serve significant role in designing medicines and to utilize for treating the “Hyper-glycemic condition” in diabetes mellitus. The herbal formulation of the medicine is mainly utilized for treating the diabetes of the “Type-2” through consideration of its anti-inflammatory influence, anti-oxidative influence, blood lipid regulative influence, and anti-glucose characters. The herbal formulation of the medicine appears to be superior in its holistic quality. The herbal formulation of the medicine can treat the diabetes of the “Type-2” through targets of multiple nature. The herbal formulation of the medicine is a good complementary and alternative treatment for the diabetes of the “Type-2”. There is a need of time to study further to fortify the herbal formulation for treating diabetes through accurate identification of active ingredients.


Keywords


Herbal Formulation of Medicine, Insulin, Insulin Resistance, Active Components, Diabetes Mellitus.

Full Text:

PDF

References


Kitabchi AE, Umpierrez GE, Miles JM, Fisher JN (July 2009). "Hyperglycemic crises in adult patients with diabetes". Diabetes Care. 32 (7): 1335–43. doi:10.2337/dc09-9032. PMC 2699725. PMID 19564476.

Krishnasamy S, Abell TL (July 2018). "Diabetic Gastroparesis: Principles and Current Trends in Management". Diabetes Therapy. 9 (Suppl 1): 1–42. doi:10.1007/s13300-018-0454-9. PMC 6028327. PMID 29934758.

American Diabetes Association (2018-03-22). "Economic Costs of Diabetes in the U.S. in 2017". Diabetes Care. 41 (5): 917–928. doi:10.2337/dci18-0007. ISSN 0149-5992. PMC 5911784. PMID 29567642.

“IDF DIABETES ATLAS Ninth Edition 2019” (PDF). https://www.idf.org/e-library/epidemiology-research/diabetes-atlas/159-idf-diabetes-atlas-ninth-edition-2019.html

Saedi, E; Gheini, MR; Faiz, F; Arami, MA (15 September 2016). "Diabetes mellitus and cognitive impairments". World Journal of Diabetes. 7 (17): 412–22. doi:10.4239/wjd.v7.i17.412. PMC 5027005. PMID 27660698.

Chiang JL, Kirkman MS, Laffel LM, Peters AL (July 2014). "Type 1 diabetes through the life span: a position statement of the American Diabetes Association". Diabetes Care. 37 (7): 2034–54. doi:10.2337/dc14-1140. PMC 5865481. PMID 24935775.

Ripsin, CM; Kang, H; Urban, RJ (January 2009). "Management of blood glucose in type 2 diabetes mellitus" (PDF). American Family Physician. 79 (1): 29–36. PMID 19145963. Archived (PDF) from the original on 2013-05-05.

Brutsaert, Erika F. (February 2017). "Drug Treatment of Diabetes Mellitus". MSDManuals.com. Retrieved 12 October 2018.

Shoback DG, Gardner D, eds. (2011). "Chapter 17". Greenspan's basic & clinical endocrinology (9th ed.). New York: McGraw-Hill Medical. ISBN 978-0-07-162243-1.

Picot J, Jones J, Colquitt JL, Gospodarevskaya E, Loveman E, Baxter L, Clegg AJ (September 2009). "The clinical effectiveness and cost-effectiveness of bariatric (weight loss) surgery for obesity: a systematic review and economic evaluation". Health Technology Assessment. 13 (41): 1–190, 215–357, iii–iv. doi:10.3310/hta13410. hdl:10536/DRO/DU:30064294. PMID 19726018.

Cash, Jill (2014). Family Practice Guidelines (3rd ed.). Springer. p. 396. ISBN 978-0-8261-6875-7. Archived from the original on 31 October 2015.

Vos T, Flaxman AD, Naghavi M, Lozano R, Michaud C, Ezzati M. (December 2012). "Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010". Lancet. 380 (9859): 2163–96. doi:10.1016/S0140-6736(12)61729-2. PMC 6350784. PMID 23245607.

Amalraj T, Ignacimuthu S. (1998). Evaluation of the hypoglycaemic effect of Memecylon umbellatum (L) in normal and alloxan diabetic mice. J Ethnopharmacol 1998; 62:247–250.

Sunil V, Shree N, Venkataranganna MV, Bhonde RR, Majumdar M. (2017). The anti diabetic and anti obesity effect of Memecylon umbellatum extract in high fat diet induced obese mice. Biomed Pharmacother 2017; 89:880–886. doi:10.1016/j.biopha.2017.01.182.

Baker RG, Hayden MS, Ghosh S. (2010). NF-kappaB, inflammation, and metabolic disease. Cell Metab 2011; 13:11–22. doi:10.1016/j. cmet.2010.12.008.

Xie LW, Atanasov AG, Guo DA, Malainer C, Zhang JX, Zehl M, et al. Activity-guided isolation of NF-kappaB inhibitors and PPARgamma agonists from the root bark of Lycium chinense Miller. J Ethnopharmacol 2014; 152:470–477. doi:10.1016/j. jep.2014.01.029.

Li XH, McGrath KC, Tran VH, Li YM, Duke CC, Roufogalis BD, et al. Attenuation of proinflammatory responses by S-[6]-Gingerol via inhibition of ROS/NF-Kappa B/COX2 activation in HuH7 cells. Evid Based Complement Alternat Med 2013;2013:146142. doi:10.1155/ 2013/146142.

Bai J, Zhu Y, Dong Y. Response of gut microbiota and inflammatory status to bitter melon (Momordica charantia L.) in high fat diet induced obese rats. J Ethnopharmacol 2016; 194:717–726. doi:10.1016/j.jep.2016.10.043.

Yeh GY, Eisenberg DM, Kaptchuk TJ, Phillips RS. Systematic review of herbs and dietary supplements for glycemic control in diabetes. Diabetes Care 2003; 26:1277–1294.

Liu Q, Liu S, Gao L, Sun S, Huan Y, Li C, et al. Anti-diabetic effects and mechanisms of action of a Chinese herbal medicine preparation JQ-R in vitro and in diabetic KK(Ay) mice. Acta Pharm Sin B 2017; 7:461–469. doi:10.1016/j.apsb.2017.04.010.

Wu Z, Bruggeman LA. Assaying NF-kappaB activation and signaling from TNF receptors. Methods Mol Biol 2014; 1155:1–14. doi:10.1007/978-1-4939-0669-7_1. 28.

Verstrepen L, Bekaert T, Chau TL, Tavernier J, Chariot A, Beyaert R. TLR-4, IL-1R and TNF-R signaling to NF-kappaB: variations on a common theme. Cell Mol Life Sci 2008; 65:2964–2978. doi:10.1007/ s00018-008-8064-8. 29.

Yeo J, Kang Y M, Cho S I, Jung M H (2011). Effects of a multi-herbal extract on type 2 diabetes. Chin Med 2011; 6:10. doi:10.1186/1749-8546-6-10. 30.

Naimi M, Vlavcheski F, Shamshoum H, Tsiani E. Rosemary extract as a potential anti-hyperglycemic agent: current evidence and future perspectives. Nutrients 2017;9:E968. doi:10.3390/nu9090968. 31.

Park MY, Mun ST. Carnosic acid inhibits TLR4-MyD88 signaling pathway in LPS-stimulated 3T3-L1 adipocytes. Nutr Res Pract 2014; 8:516–520. doi:10.4162/nrp.2014.8.5.516.

Rochette L, Zeller M, Cottin Y. (2014). Diabetes, oxidative stress and therapeutic strategies. Biochim Biophys Acta 2014; 1840:2709–2729. doi:10.1016 / j.bbagen. 2014.05.017.

Sies H, Berndt C, Jones DP (2017). Oxidative stress. Annu Rev Biochem 2017; 86:715–748. doi:10.1146/annurev-biochem-061516-045037. 33.

Tiedge M, Lortz S, Drinkgern J, et al. (1997). Relation between antioxidant enzyme gene expression and antioxidative defense status of insulin producing cells. Diabetes 1997; 46:1733–1742.

Evans JL, Goldfine ID, Maddux BA, Grodsky GM. Are oxidative stress-activated signaling pathways mediators of insulin resistance and beta-cell dysfunction? Diabetes 2003; 52:1–8.

Tangvarasittichai S. Oxidative stress, insulin resistance, dyslipidemia and type 2 diabetes mellitus. World J Diabetes 2015; 6:456–480. doi:10.4239/wjd.v6.i3.456. 36.

Newsholme P, Cruzat VF, Keane KN, Carlessi R, de Bittencourt PI Jr. Molecular mechanisms of ROS production and oxidative stress in diabetes. Biochem J 2016; 473:4527–4550. doi:10.1042/bcj20160503c.

Sangeetha MK, Balaji Raghavendran HR, Gayathri V, Vasanthi HR. (2011). Tinospora cordifolia (L) attenuates oxidative stress and distorted carbohydrate metabolism in experimentally induced type 2 diabetes in rats. J Nat Med 2011; 65:544–550. doi:10.1007/s11418-011- 0538-6.

Chen G, Lu F, Xu L, Dong H, Yi P, Wang F, et al. (2013). The anti-diabetic effects and pharmacokinetic profiles of berberine in mice treated with Jiao-Tai-Wan and its compatibility. Phytomedicine 2013; 20:780– 786. doi:10.1016/j.phymed.2013.03.004.

Zhang Y, An H, Pan SY, Zhao DD, Zuo JC, Li XK, et al. (2016). Jiang Tang Xiao Ke Granule, a classic Chinese herbal formula, improves the effect of metformin on lipid and glucose metabolism in diabetic mice. Evid Based Complement Alternat Med 2016;2 016:1592731. doi:10.1155/ 2016/1592731.

Soskic SS, Dobutovic BD, Sudar EM, et al. (2011). Regulation of inducible nitric oxide synthase (iNOS) and its potential role in insulin resistance, diabetes and heart failure. Open Cardiovasc Med J 2011; 5:153–163. doi:10.2174/1874192401105010153.

Assaei R, Mokarram P, Dastghaib S, Darbandi S, Darbandi M, Zal F, et al. (2016). Hypoglycemic effect of aquatic extract of stevia in pancreas of diabetic rats: PPARgamma-dependent regulation or antioxidant potential. Avicenna J Med Biotechnol 2016; 8:65–74.

Yazici D, Sezer H. (2017). Insulin resistance, obesity and lipotoxicity. Adv Exp Med Biol 2017; 960:277–304. doi:10.1007/978-3-319-48382-5_12.

McGarry JD. (2001). Banting lecture: dysregulation of fatty acid metabolism in the etiology of type 2 diabetes. Diabetes 2002; 51:7–18.

Cai S, Sun W, Fan Y, et al. (2016). Effect of mulberry leaf (Folium Mori) on insulin resistance via IRS-1/PI3K/Glut-4 signalling pathway in type 2 diabetes mellitus rats. Pharm Biol 2016; 54:2685–2691. doi:10.1080/ 13880209.2016.1178779.

Duan B, Zhao Z, Lin L, Jin J, Zhang L, Xiong H, et al. (2017). Antidiabetic effect of Tibetan medicine Tang-Kang-Fu-San on high-fat diet and streptozotocin-induced type 2 diabetic rats. Evid Based Complement Alternat Med 2017; 2017:7302965. doi:10.1155/2017/7302965

Ahmed D, Sharma M, Mukerjee A, Ramteke PW, Kumar V. (2013). Improved glycemic control, pancreas protective and hepatoprotective effect by traditional poly-herbal formulation “Qurs Tabasheer” in streptozotocin induced diabetic rats. BMC Complement Altern Med 2013; 13:10. doi:10.1186/1472-6882-13-10.

Zhang Y, Li X, Li J, Zhang Q, Chen X, Liu X, et al. (2016). The antihyperglycemic efficacy of a lipid-lowering drug Daming capsule and the underlying signaling mechanisms in a rat model of diabetes mellitus. Sci Rep 2016; 6:34284. doi:10.1038/srep34284.

Yang F, Chen G, Ma M, Qiu N, Zhu L, Li J. (2018). Fatty acids modulate the expression levels of key proteins for cholesterol absorption in Caco-2 monolayer. Lipids Health Dis 2018; 17:32. doi:10.1186/s12944-018- 0675-y.

Chen CH, Chang MY, Lin YS, Lin DG, Chen SW, Chao PM. (2009). A herbal extract with acetyl-coenzyme A carboxylase inhibitory activity and its potential for treating metabolic syndrome. Metabolism 2009; 58:1297–1305. doi:10.1016/ j.metabol. 2009.04.012.

Giovannoni MP, Piaz VD, Vergelli C, Barlocco D. (2003). Selective ACAT inhibitors as promising antihyperlipidemic, antiathero-sclerotic and anti-Alzheimer drugs. Mini Rev Med Chem 2003; 3:576–584.

Griffith DA, Kung DW, Esler WP, Amor PA, Bagley SW, Beysen C, et al. (2014). Decreasing the rate of metabolic ketone reduction in the discovery of a clinical acetyl-CoA carboxylase inhibitor for the treatment of diabetes. J Med Chem 2014; 57:10512–10526. doi:10.1021/jm5016022.

Banz WJ, Iqbal MJ, Bollaert M, Chickris N, James B, Higginbotham DA, et al. (2007). Ginseng modifies the diabetic phenotype and genes associated with diabetes in the male ZDF rat. Phytomedicine 2007; 14:681–689. doi:10.1016/ j.phymed.2007.06.003.

Saba E, Jeon BR, Jeong DH, Lee K, Goo YK, Kim SH, et al. (2016). Black ginseng extract ameliorates hypercholesterolemia in rats. J Ginseng Res 2016; 40:160–168. doi:10.1016/ j.jgr.2015.07.003.

Bensellam M, Laybutt DR, Jonas JC. (2012). The molecular mechanisms of pancreatic beta-cell glucotoxicity: recent findings and future research directions. Mol Cell Endocrinol 2012; 364:1–27. doi:10.1016/j. mce.2012.08.003.

Chang MS, Oh MS, Kim DR, Jung KJ, Park S, Choi SB, et al. (2006). Effects of okchun-san: a herbal formulation, on blood glucose levels and body weight in a model of type 2 diabetes. J Ethnopharmacol 2006; 103:491–495. doi:10.1016/ j.jep.2005.08.039.

Morimoto Y, Sakata M, Ohno A, Maegawa T, Tajima S. (2002). Effects of Byakko-ka-ninjin-to, Bofu-tsusho-san and Gorei-san on blood glucose level, water intake and urine volume in KKAy mice (in Japanese). Yakugaku Zasshi 2002; 122:163–168.

Gray GM. (1975). Carbohydrate digestion and absorption. Role of the small intestine. N Engl J Med 1975; 292:1225–1230. doi:10.1056/ nejm197506052922308.

Taslimi P, Aslan HE, Demir Y, Oztaskin N, Maras A, Gulcin I, et al. (2018). Diarylmethanon, bromophenol and diarylmethane compounds: discovery of potent aldose reductase, alpha-amylase and alphaglycosidase inhibitors as new therapeutic approach in diabetes and functional hyperglycemia. Int J Biol Macromol 2018; 119:857–863. doi:10.1016/ j.ijbiomac. 2018.08.004.

Olennikov DN, Chirikova NK, Kashchenko NI, Nikolaev VM, Kim SW, Vennos C. (2018). Bioactive phenolics of the genus Artemisia (Asteraceae): HPLC-DAD-ESI-TQ-MS/MS profile of the Siberian species and their inhibitory potential against alpha-amylase and alpha-glucosidase. Front Pharmacol 2018; 9:756. doi:10.3389/fphar.2018.00756.

Honma A, Koyama T, Yazawa K. (2011). Anti-hyperglycaemic effects of the Japanese red maple Acer pycnanthum and its constituents the ginnalins B and C. J Enzyme Inhib Med Chem 2011; 26:176–180. doi:10.3109/14756366.2010.486795.

Butala MA, Kukkupuni SK, Vishnuprasad CN. (2017). Ayurvedic antidiabetic formulation Lodhrasavam inhibits alpha-amylase, alphaglucosidase and suppresses adipogenic activity in vitro. J Ayurveda Integr Med 2017; 8:145–151. doi:10.1016/ j.jaim. 2017.03.005.

Nadkarni P, Chepurny OG, Holz GG. (2014). Regulation of glucose homeostasis by GLP-1. Prog Mol Biol Transl Sci 2014; 121:23–65. doi:10.1016/b978-0-12-800101-1.00002-8.

Li X, Qie S, Wang X, Zheng Y, Liu Y, Liu G. (2018). The safety and efficacy of once-weekly glucagon-like peptide-1 receptor agonist semaglutide in patients with type 2 diabetes mellitus: a systemic review and metaanalysis. Endocrine 2018; 62:535–545. doi:10.1007/s12020-018- 1708-z.

Samad MB, Mohsin M, Razu BA, Hossain MT, Mahzabeen S, Unnoor N, et al. (2017). [6]-Gingerol, from Zingiber officinale, potentiates GLP-1 mediated glucose-stimulated insulin secretion pathway in pancreatic beta-cells and increases RAB8/RAB10-regulated membrane presentation of GLUT4 transporters in skeletal muscle to improve hyperglycemia in Lepr(db/db) type 2 diabetic mice. BMC Complement Altern Med 2017; 17:395. doi:10.1186/s12906-017 -1903-0.

Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, et al. (2005). Diversity of the human intestinal microbial flora. Science 2005; 308:1635–1638. doi:10.1126/science.1110591.

Kootte RS, Vrieze A, Holleman F, Dallinga-Thie GM, Zoetendal EG, de Vos WM, et al. (2012). The therapeutic potential of manipulating gut microbiota in obesity and type 2 diabetes mellitus. Diabetes Obes Metab 2012; 14:112–120. doi:10.1111/j.1463-1326.2011.01483.x.

Wang JH, Kim BS, Han K, Kim H. (2017). Ephedra-treated donor-derived gut microbiota transplantation ameliorates high fat diet-induced obesity in rats. Int J Environ Res Public Health 2017;14: E555. doi:10.3390/ijerph14060555.

Gao K, Yang R, Zhang J, Wang Z, Jia C, Zhang F, et al. (2018). Effects of Qijian mixture on type 2 diabetes assessed by metabonomics, gut microbiota and network pharmacology. Pharmacol Res 2018; 130:93–109. doi:10.1016/ j. phrs.2018.01.011.

Long W, Hui Ju Z, Fan Z, Jing W, Qiong L. (2014). The effect of recombinant adeno-associated virus-adiponectin (rAAV2/1-Acrp30) on glycolipid dysmetabolism and liver morphology in diabetic rats. Gen Comp Endocrinol 2014; 206:1–7. doi:10.1016/ j.ygcen. 2014.07.003.

Lim S, Quon MJ, Koh KK. (2014). Modulation of adiponectin as a potential therapeutic strategy. Atherosclerosis 2014; 233:721–728. doi:10.1016/ j. atherosclerosis. 2014.01.051.

Cefalu WT, Ye J, Wang ZQ. Efficacy of dietary supplementation with botanicals on carbohydrate metabolism in humans. Endocr Metab Immune Disord Drug Targets. 2008;8: 78–81. [PubMed] [Google Scholar]

Cousens G. There is a cure for diabetes: the tree of life 21 day program. California: North Atlantic Books; 2008. pp. 191–192. [Google Scholar]


Refbacks

  • There are currently no refbacks.